Multiple canonical decompositions of families of operators and a model of quasinormal families
HTML articles powered by AMS MathViewer
- by Ximena Catepillán, Marek Ptak and Wacław Szymański
- Proc. Amer. Math. Soc. 121 (1994), 1165-1172
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189538-7
- PDF | Request permission
Abstract:
A general method of canonical decompositions of several operatorvalued functions (operators) is presented. A model of a family of doubly commuting quasinormal operators is constructed.References
- W. B. Arveson, An invitation to ${C^ \ast }$-algebras, Springer-Verlag, New York, Heidelberg, and Berlin, 1976.
- Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723–728. MR 59483, DOI 10.1090/S0002-9939-1953-0059483-2
- John B. Conway, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR 1112128, DOI 10.1090/surv/036
- Masatoshi Fujii, Mitsuharu Kajiwara, Yoshinobu Kato, and Fumio Kubo, Decompositions of operators in Hilbert spaces, Math. Japon. 21 (1976), no. 2, 117–120. MR 423107
- Arthur Lubin, Weighted shifts and commuting normal extension, J. Austral. Math. Soc. Ser. A 27 (1979), no. 1, 17–26. MR 524154, DOI 10.1017/S1446788700016608
- Marek Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), no. 3, 255–262. MR 587496, DOI 10.4064/ap-37-3-255-262
- Wacław Szymański, Decompositions of operator-valued functions in Hilbert spaces, Studia Math. 50 (1974), 265–280. MR 377569, DOI 10.4064/sm-50-3-265-280 —, Antisymmetric operator algebras. II, Ann. Polon. Math. 37 (1980), 299-311.
- Wacław Szymański, On the “symmetric commutant”—canonical decomposition of families of Hilbert space operators, Ark. Mat. 21 (1983), no. 2, 205–215. MR 727344, DOI 10.1007/BF02384310
- Wacław Szymański, Dilations and subnormality, Proc. Amer. Math. Soc. 101 (1987), no. 2, 251–259. MR 902537, DOI 10.1090/S0002-9939-1987-0902537-9
- Herman Wold, A study in the analysis of stationary time series, Almqvist & Wiksell, Stockholm, 1954. 2d ed; With an appendix by Peter Whittle. MR 0061344
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1165-1172
- MSC: Primary 47A99; Secondary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189538-7
- MathSciNet review: 1189538