## Generalizations of Deodharâ€™s $\alpha$-localization functor

HTML articles powered by AMS MathViewer

- by Ben Cox PDF
- Proc. Amer. Math. Soc.
**121**(1994), 981-990 Request permission

## Abstract:

In this paper we generalize the result of Deodhar (see Invent. Math.**57**(1980), 101-118) on $\alpha$-localization functors. Namely, we show that localization with respect to a larger family of left denominator sets "intertwines" with tensoring by finite-dimensional representations. In the language of the authorâ€™s previous work, localization with respect to such a left denominator set produces a new example of an $\mathfrak {F}$-functor and an $\mathfrak {F}$-category.

## References

- Walter Borho and Rudolf Rentschler,
*Oresche Teilmengen in EinhĂĽllenden Algebren*, Math. Ann.**217**(1975), no.Â 3, 201â€“210. MR**401853**, DOI 10.1007/BF01436171
B. Cox, $\mathfrak {F}$- - Vinay V. Deodhar,
*On a construction of representations and a problem of Enright*, Invent. Math.**57**(1980), no.Â 2, 101â€“118. MR**567193**, DOI 10.1007/BF01390091 - Thomas J. Enright,
*On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae*, Ann. of Math. (2)**110**(1979), no.Â 1, 1â€“82. MR**541329**, DOI 10.2307/1971244
â€”, - K. R. Goodearl and R. B. Warfield Jr.,
*An introduction to noncommutative Noetherian rings*, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR**1020298** - Peter John Hilton and Urs Stammbach,
*A course in homological algebra*, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR**0346025**, DOI 10.1007/978-1-4684-9936-0 - Anthony W. Knapp,
*Lie groups, Lie algebras, and cohomology*, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR**938524**

*categories and*$\mathfrak {F}$-

*functors in the representation theory of Lie algebras*, preprint.

*Representations of complex semisimple Lie groups*, Springer-Verlag, New York, 1981.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 981-990 - MSC: Primary 17B35; Secondary 16P50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189540-5
- MathSciNet review: 1189540