Generalizations of Deodhar’s $\alpha$-localization functor
HTML articles powered by AMS MathViewer
- by Ben Cox
- Proc. Amer. Math. Soc. 121 (1994), 981-990
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189540-5
- PDF | Request permission
Abstract:
In this paper we generalize the result of Deodhar (see Invent. Math. 57 (1980), 101-118) on $\alpha$-localization functors. Namely, we show that localization with respect to a larger family of left denominator sets "intertwines" with tensoring by finite-dimensional representations. In the language of the author’s previous work, localization with respect to such a left denominator set produces a new example of an $\mathfrak {F}$-functor and an $\mathfrak {F}$-category.References
- Walter Borho and Rudolf Rentschler, Oresche Teilmengen in Einhüllenden Algebren, Math. Ann. 217 (1975), no. 3, 201–210. MR 401853, DOI 10.1007/BF01436171 B. Cox, $\mathfrak {F}$-categories and $\mathfrak {F}$-functors in the representation theory of Lie algebras, preprint.
- Vinay V. Deodhar, On a construction of representations and a problem of Enright, Invent. Math. 57 (1980), no. 2, 101–118. MR 567193, DOI 10.1007/BF01390091
- Thomas J. Enright, On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae, Ann. of Math. (2) 110 (1979), no. 1, 1–82. MR 541329, DOI 10.2307/1971244 —, Representations of complex semisimple Lie groups, Springer-Verlag, New York, 1981.
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025, DOI 10.1007/978-1-4684-9936-0
- Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 981-990
- MSC: Primary 17B35; Secondary 16P50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189540-5
- MathSciNet review: 1189540