Absolute conjugate Fourier effective methods and functions
HTML articles powered by AMS MathViewer
- by A. Kumar and A. Peyerimhoff
- Proc. Amer. Math. Soc. 121 (1994), 1123-1132
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189545-4
- PDF | Request permission
Abstract:
We consider matrix transformation of the conjugate series of a Fourier series. Necessary and sufficient conditions on the function, generating the Fourier series, as well as on the method of the transformation have been obtained for absolute summability of the transformed series.References
- G. Das and P. C. Mohapatra, Necessary and sufficient conditions for absolute Nörlund summability of Fourier series, Proc. London Math. Soc. (3) 41 (1980), no. 2, 217–253. MR 585251, DOI 10.1112/plms/s3-41.2.217
- H. P. Dikshit and A. Kumar, Absolute total-effectiveness of $(N,\,p_{n})$ means. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 103–108. MR 374786, DOI 10.1017/S0305004100049446
- Masako Izumi and Shin-ichi Izumi, Absolute Nörlund summability of Fourier series of functions of bounded variation, Bull. Austral. Math. Soc. 3 (1970), 111–123. MR 271622, DOI 10.1017/S000497270004572X
- W. B. Jurkat, A. Kumar, and A. Peyerimhoff, On the absolute Fourier-effectiveness of summability methods, J. London Math. Soc. (2) 31 (1985), no. 1, 101–114. MR 810567, DOI 10.1112/jlms/s2-31.1.101
- Arun Kumar, Necessary and sufficient type theorem for absolute Nörlund summability of conjugate series, Proc. Amer. Math. Soc. 67 (1977), no. 1, 77–83. MR 510923, DOI 10.1090/S0002-9939-1977-0510923-8
- B. Kuttner and B. N. Sahney, On the absolute matrix summability of Fourier series, Pacific J. Math. 43 (1972), 407–419. MR 320611
- T. Pati, On the absolute Nörlund summability of the conjugate series of a Fourier series, J. London Math. Soc. 38 (1963), 204–214. MR 149193, DOI 10.1112/jlms/s1-38.1.204
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1123-1132
- MSC: Primary 42A28; Secondary 42A50
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189545-4
- MathSciNet review: 1189545