Some fixed point theorems for composites of acyclic maps
HTML articles powered by AMS MathViewer
- by Sehie Park, S. P. Singh and Bruce Watson
- Proc. Amer. Math. Soc. 121 (1994), 1151-1158
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189547-8
- PDF | Request permission
Abstract:
We obtain fixed point theorems for a new class of multifunctions containing compact composites of acyclic maps defined on a convex subset of a locally convex Hausdorff topological vector space. Our new results are applied to approximatively compact, convex sets or to Banach spaces with the Oshman property.References
- H. Ben-El-Mechaiekh, The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc. 41 (1990), no. 3, 421–434. MR 1071044, DOI 10.1017/S000497270001830X
- Hichem Ben-El-Mechaiekh and Paul Deguire, Approximation of nonconvex set-valued maps, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 5, 379–384 (English, with French summary). MR 1096616
- Hichem Ben-El-Mechaiekh and Paul Deguire, General fixed point theorems for nonconvex set-valued maps, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 6, 433–438 (English, with French summary). MR 1096627
- Felix E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283–301. MR 229101, DOI 10.1007/BF01350721
- Felix E. Browder, On a sharpened form of the Schauder fixed-point theorem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 11, 4749–4751. MR 463982, DOI 10.1073/pnas.74.11.4749
- Felix E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 67–80. MR 737389, DOI 10.1090/conm/026/737389
- Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. MR 251603, DOI 10.1007/BF01110225
- Lech Górniewicz and Andrzej Granas, Some general theorems in coincidence theory. I, J. Math. Pures Appl. (9) 60 (1981), no. 4, 361–373. MR 646365 L. Górniewicz and A. Granas, Topology of morphisms and fixed point problems for set-valued mappings, Fixed Point Theory and Applications (M. A. Théra and J. B. Baillon, eds.), Longman Sci. Tech., Essex, 1991, pp. 173-191.
- Andrzej Granas and Fon Che Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. (9) 65 (1986), no. 2, 119–148. MR 867668
- C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl. 38 (1972), 205–207. MR 303368, DOI 10.1016/0022-247X(72)90128-X
- Marc Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), no. 1, 151–201. MR 721236, DOI 10.1016/0022-247X(83)90244-5
- Marc Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152 (1990), no. 1, 46–60. MR 1072927, DOI 10.1016/0022-247X(90)90092-T
- Marc Lassonde, Réduction du cas multivoque au cas univoque dans les problèmes de coïncidence, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 293–302 (French, with English summary). MR 1122836
- Sehie Park, Fixed point theorems on compact convex sets in topological vector spaces, Fixed point theory and its applications (Berkeley, CA, 1986) Contemp. Math., vol. 72, Amer. Math. Soc., Providence, RI, 1988, pp. 183–191. MR 956491, DOI 10.1090/conm/072/956491
- Sehie Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, Fixed point theory and applications (Halifax, NS, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 248–277. MR 1190044
- Sehie Park, Fixed point theory of multifunctions in topological vector spaces, J. Korean Math. Soc. 29 (1992), no. 1, 191–208. MR 1157308
- Sehie Park, Cyclic coincidence theorems for acyclic multifunctions on convex spaces, J. Korean Math. Soc. 29 (1992), no. 2, 333–339. MR 1180660
- Michael J. Powers, Lefschetz fixed point theorems for a new class of multi-valued maps, Pacific J. Math. 42 (1972), 211–220. MR 334189
- Simeon Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), no. 1, 104–113. MR 514991, DOI 10.1016/0022-247X(78)90222-6
- Simeon Reich, Fixed point theorems for set-valued mappings, J. Math. Anal. Appl. 69 (1979), no. 2, 353–358. MR 538223, DOI 10.1016/0022-247X(79)90148-3
- Ivan Singer, Some remarks on approximative compactness, Rev. Roumaine Math. Pures Appl. 9 (1964), 167–177. MR 178450
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1151-1158
- MSC: Primary 47H10; Secondary 47H19, 54C60, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189547-8
- MathSciNet review: 1189547