On the factorization of $A_ p$ weights
HTML articles powered by AMS MathViewer
- by Xing Min Li
- Proc. Amer. Math. Soc. 121 (1994), 1075-1077
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189551-X
- PDF | Request permission
Abstract:
It is shown that if $(u,v) \in {A_p}$ then there exist $({u_1},{v_1}) \in {A_1}$ and $({u_2},{v_2}) \in {A_1}$ such that $u = u_1^{p’ }v_2^{ - p},v = v_1^{p’ }u_2^{ - p}$.References
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Peter W. Jones, Factorization of $A_{p}$ weights, Ann. of Math. (2) 111 (1980), no. 3, 511–530. MR 577135, DOI 10.2307/1971107
- C. J. Neugebauer, Inserting $A_{p}$-weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 644–648. MR 687633, DOI 10.1090/S0002-9939-1983-0687633-2
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1075-1077
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1189551-X
- MathSciNet review: 1189551