Howe/Kirillov theory for $p$-adic symmetric spaces
HTML articles powered by AMS MathViewer
- by Jeffrey Hakim
- Proc. Amer. Math. Soc. 121 (1994), 1299-1305
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195479-1
- PDF | Request permission
Abstract:
The method of coadjoint orbits is adapted to sufficiently small compact subgroups of a pair $(G,{G_ + })$, where G is a p-adic group and ${G_ + }$ is the subgroup of fixed points of an involution. The techniques developed here have been used to prove local integrability of certain distributions which are fundamental in the harmonic analysis of $G/{G_ + }$.References
- Benedict H. Gross, Some applications of Gel′fand pairs to number theory, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 2, 277–301. MR 1074028, DOI 10.1090/S0273-0979-1991-16017-9
- Jeffrey Hakim, Admissible distributions on $p$-adic symmetric spaces, J. Reine Angew. Math. 455 (1994), 1–19. MR 1293871, DOI 10.1515/crll.1994.455.1
- Jeffrey Hakim, Character relations for distinguished representations, Amer. J. Math. 116 (1994), no. 5, 1153–1202. MR 1296727, DOI 10.2307/2374943
- Harish-Chandra, Admissible invariant distributions on reductive $p$-adic groups, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen’s Univ., Kingston, Ont., 1977) Queen’s Papers in Pure and Appl. Math., No. 48, Queen’s Univ., Kingston, Ont., 1978, pp. 281–347. MR 0579175
- Roger E. Howe, Kirillov theory for compact $p$-adic groups, Pacific J. Math. 73 (1977), no. 2, 365–381. MR 579176, DOI 10.2140/pjm.1977.73.365
- H. Jacquet and K. F. Lai, A relative trace formula, Compositio Math. 54 (1985), no. 2, 243–310. MR 783512
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1299-1305
- MSC: Primary 22E50; Secondary 22E35
- DOI: https://doi.org/10.1090/S0002-9939-1994-1195479-1
- MathSciNet review: 1195479