FULL SUBALGEBRAS OF JORDAN-BANACH ALGEBRAS
AND ALGEBRA NORMS ON JB*-ALGEBRAS

J. PÉREZ, L. RICO, AND A. RODRÍGUEZ

(Communicated by Palle E. T. Jorgensen)

Abstract. We introduce normed Jordan Q-algebras, namely, normed Jordan algebras in which the set of quasi-invertible elements is open, and we prove that a normed Jordan algebra is a Q-algebra if and only if it is a full subalgebra of its completion. Homomorphisms from normed Jordan Q-algebras onto semisimple Jordan-Banach algebras with minimality of norm topology are continuous. As a consequence, the topology of the norm of a JB*-algebra is the smallest normable topology making the product continuous, and JB*-algebras have minimality of the norm. Some applications to (associative) C*-algebras are also given: (i) the associative normed algebras that are ranges of continuous (resp. contractive) Jordan homomorphisms from C*-algebras are bicontinuously (resp. isometrically) isomorphic to C*-algebras, and (ii) weakly compact Jordan homomorphisms from C*-algebras are of finite rank.

Introduction

Associative normed algebras in which the set of quasi-invertible elements is open were considered first by Kaplansky [15], who called them "normed Q-algebras". Since then, normed Q-algebras were seldom studied (exceptions are Yood's relevant papers [32, 33]) until the Wilansky conjecture [30], which states that associative normed Q-algebras are nothing but full subalgebras of Banach algebras. In fact, Palmer [20] set the bases for a systematic study of associative normed Q-algebras, providing, in particular, an affirmative answer to Wilansky's conjecture (see also [3] for an independent proof of this result). It must also be mentioned that full subalgebras of Banach algebras have played a relevant role in connection with the nonassociative extension of Johnson's uniqueness-of-norm theorem [25] and with the nonassociative extension of the Civin-Yood decomposition theorem [10].

The general theory of Jordan-Banach algebras began with the paper by Balachandran and Rema [2]; since then it has been fully developed in a complete analogy with the case of (associative) Banach algebras (see, e.g., [29, 16, 1, 9, 25, 10, 5, 11]), although in most of the cases new methods have been needed for such Jordan extensions of associative results. Noncomplete normed Jordan algebras whose sets of quasi-invertible elements are open (called, of course, "normed Jordan Q-algebras") were only germinally considered in [29].
It is the aim of this paper to develop the theory of normed Jordan Q-algebras, providing also the complete analogy with the associative case. With no additional effort we shall even consider normed noncommutative Jordan Q-algebras so that the associative (or even alternative) case will remain contained in our approach. In the first part of this paper we give several characterizations of normed noncommutative Jordan Q-algebras (Theorem 4 and Proposition 6), including the one asserting that normed noncommutative Jordan Q-algebras are nothing but full subalgebras of noncommutative Jordan-Banach algebras (the affirmative answer to Wilansky's conjecture in the Jordan setting). It must also be emphasized that the normed complexification of a normed noncommutative Jordan real Q-algebra is also a Q-algebra (Proposition 3), whose proof needs an intrinsic Jordan method as it is the Shirshov-Cohn theorem with inverses [18]. We end this section with a theorem on automatic continuity (Theorem 8) which is a Jordan extension of the main result in [27].

The second part of the paper is devoted to applying a part of the developed theory of normed Jordan Q-algebras in order to obtain new results on JB^*-algebras (hence on the Jordan structure of C^*-algebras). Thus in Theorem 10 we use the aforementioned result on automatic continuity to generalize Cleveland's theorem [8], which asserts that the topology of the norm of a C^*-algebra A is the smallest algebra-normable topology on A, to noncommutative JB^*-algebras. (As a consequence, every norm on the vector space of a C^*-algebra that makes the Jordan product continuous defines a topology which is stronger than the topology of the C^*-norm—a result that improves the original Cleveland theorem.) The JB^*-extension of Cleveland's result was obtained almost at the same time and with essentially identical techniques by Bensebah [4]. With the nonassociative Vidav-Palmer Theorem [24], it is also proved that noncommutative JB^*-algebras have minimality of the norm (Proposition 11); i.e., $|\cdot| = \|\cdot\|$ whenever $|\cdot|$ is any algebra norm satisfying $|\cdot| \leq \|\cdot\|$. Finally, with the main result in [26], we determine the associative normed algebras that are ranges of continuous Jordan homomorphisms from C^*-algebras (Corollary 12), and we show that ranges of weakly compact Jordan homomorphisms from C^*-algebras are finite dimensional (Corollary 13).

1. Preliminaries and notation

All the algebras we consider here are real or complex. A nonassociative algebra A satisfying $x(yx) = (xy)x$ and $x^2(yx) = (x^2y)x$ for all x, y in A is called a noncommutative Jordan (in short, n.c.J.) algebra. As usual A^+ denotes the symmetrized algebra of A with product $x \cdot y = \frac{1}{2}(xy + yx)$. Recall that A^+ is a Jordan algebra whenever A is a n.c.J. algebra. For any element a in a n.c.J. algebra A, U_a denotes the linear operator on A defined by

$$U_a(x) = a(ax + xa) - a^2x = (ax + xa)a - xa^2, \quad x \in A.$$

Recall that $U_a = U_a^+$, where U_a^+ is the usual U-operator on the Jordan algebra A^+. An element a in a n.c.J. algebra A with unit 1 is invertible with inverse b if $ab = ba = 1$ and $a^2b = ba^2 = a$. This is equivalent to a being invertible with inverse b in the Jordan algebra A^+ [19], whence, if $\text{Inv}(A)$ denotes the set of invertible elements in A, then we have $\text{Inv}(A) = \text{Inv}(A^+)$. We recall the
following basic results (see [14, Theorem 13, p. 52]). For elements \(x, y \) in \(A \):
- \(x \) is invertible if and only if \(U_x \) is an invertible operator, and in that case \(x^{-1} = U_x^{-1}(x) \) and \(U_x^{-1} = U_{x^{-1}} \).
- \(x \) and \(y \) are invertible if and only if \(U_x(y) \) is invertible.
- \(x \) is invertible if and only if \(x^n \) (\(n \geq 1 \)) is invertible.

An element \(a \) in a n.c.J. algebra \(A \) is quasi-invertible with quasi-inverse \(b \) if \(1 - a \) has inverse \(1 - b \) in the n.c.J. algebra \(A_1 \) (the unitization of \(A \)) obtained by adjoining a unit to \(A \) in the usual way. Let \(q - \text{Inv}(A) \) denote the set of quasi-invertible elements in \(A \). Any real n.c.J. algebra \(A \) can be regarded as a real subalgebra of a complex n.c.J. algebra \(A_C \) which satisfies \(A_C = A \oplus iA \) and is called the complexification of \(A \) (see [6, Definition 3.1]). The spectrum of an element \(x \) in a n.c.J. algebra \(A \), denoted by \(sp(x, A) \), is defined as in the associative case (see [6, Definitions 5.1 and 13.6]). The "algebraic" spectral radius of \(x \) is defined by

\[
\rho(x, A) := \sup\{|\lambda| : \lambda \in sp(x, A)\}.
\]

We write \(sp(x) \) or \(\rho(x) \) instead of \(sp(x, A) \) or \(\rho(x, A) \) when no confusion can occur. A subalgebra \(B \) of a n.c.J. algebra \(A \) is called a full subalgebra of \(A \) if \(B \) contains the quasi inverses of its elements that are quasi-invertible in \(A \), that is, the equality \(q - \text{Inv}(B) = B \cap q - \text{Inv}(A) \) holds. Easy examples of full subalgebras are left or right ideals and strict inner ideals (see definition later).

It is clear that if \(B \) is a full subalgebra of a complex n.c.J. algebra \(A \), then

\[
sp(x, A) \cup \{0\} = sp(x, B) \cup \{0\} \quad (x \in B).
\]

A n.c.J. algebra \(A \) is said to be normed if an algebra norm (a norm \(\| \cdot \| \) on the vector space of \(A \) satisfying \(\|ab\| \leq \|a\| \|b\| \) for all \(a, b \) in \(A \)) is given on \(A \). In that case the "geometric" spectral radius of \(x \in A \) is the number

\[
r_{\|\cdot\|}(x) := \lim \|x^n\|^{1/n}.
\]

When no confusion can occur, we write \(r(x) \) to denote \(r_{\|\cdot\|}(x) \). The unitization \(A_1 \) of n.c.J. normed algebra \(A \) becomes normed by defining \(\|x + \alpha\| := \|x\| + \|\alpha\| \) for \(x + \alpha \) in \(A_1 \). Also the complexification of a real n.c.J. normed algebra can be normed as in [6, Proposition 13.3]. Since every element \(x \) in a n.c.J. normed algebra \(A \) can be immersed in a closed associative full subalgebra of \(A \) [5, Théorème 1], it follows that the properties of the spectrum and the classical functional calculus for a single element in (associative) Banach algebras remain valid for n.c.J. complete normed algebras. In particular, the Gelfand-Beurling formula, \(r(x) = \rho(x) \), holds for any element \(x \) in a n.c.J. complete normed algebra.

2. Noncommutative Jordan \(Q \)-algebras

A n.c.J. normed algebra \(A \) in which the set \(q - \text{Inv}(A) \) is open is called a n.c.J. \(Q \)-algebra. Taking into account that \(A^+ \) with the same norm as \(A \) is a Jordan normed algebra and \(q - \text{Inv}(A^+) = q - \text{Inv}(A) \), it is clear that \(A \) is a n.c.J. \(Q \)-algebra if and only if \(A^+ \) is a Jordan \(Q \)-algebra. This fact will be used without comment in what follows. Also note that when \(A \) has a unit, \(q - \text{Inv}(A) = \{1 - x : x \in \text{Inv}(A)\} \), so \(q - \text{Inv}(A) \) is open if and only if \(\text{Inv}(A) \) is open. If \(A \) is a n.c.J. complete normed algebra and \(\phi \) denotes the mapping \(x \to U_{1-x} \) from \(A \) into the Banach algebra \(BL(A_1) \) of bounded linear operators on \(A_1 \), then \(\phi \) is continuous and \(q - \text{Inv}(A) = \phi^{-1}((\text{Inv}(BL(A_1)))) \), so
Theorem 4: If the set of quasi-invertible elements of a n.c.J. normed algebra
A has some interior point, then A is a n.c.J. Q-algebra.

Proof. Suppose first that A has a unit and the set Inv(A) has some interior
point, say x_o. Choose y £ Inv(A). Then the linear operator U_y is a homeo-
morphism on A, and it leaves invariant the set Inv(A), so U_y(x_o) is an interior
point of Inv(A). Since the mapping z —> U_z(x_o), z £ A, is continuous, it fol-
low that there is some number p > 0 such that U_z(x_o) £ Inv(A), (hence,
z £ Inv(A)) whenever ||z - y|| < p. Hence, Inv(A) is open.

Suppose now that the set q - Inv(A) has some interior point, say a, and
let p > 0 be such that u £ q - Inv(A) whenever ||u - u_o|| < p. Put \(\delta = \rho/(1+p+||u_o||) \) and x_o = 1 - u_u_o £ Inv(A_1). Then for z = a + u in A_1 such that
||z - x_o|| < \(\delta \) we have \(|1-a| < \delta \) and \(\|au+u\| < \|1+a\|\|u\| \), which implies \(a \neq 0 \) and \(\|u_o-(-u/\alpha)\| < \delta(1+||u_o||)/(1-\delta) < \rho \), so \(-u/\alpha \in q - Inv(A)\); that
is, \(z = a + u \in Inv(A_1) \), and, as we noted in the beginning, this implies that the
set Inv(A_1) is open. Since A is an ideal of A_1, it is also a full subalgebra of
A_1; hence, \(q - Inv(A) = A \cap q - Inv(A_1) \), which shows that the set \(q - Inv(A) \)
is open. □

As a consequence of Proposition 1 and its proof we obtain

Proposition 2. Let A be a n.c.J. normed algebra and A_1 its normed unitization.
Then A is a n.c.J. Q-algebra if and only if the same is true for A_1.

Proposition 3. Let A be a n.c.J. real normed algebra and A_C its normed com-
plexification. Then A is a n.c.J. Q-algebra if and only if the same is true for
A_C.

Proof. Assume that A is a real n.c.J. Q-algebra. We can suppose that A actu-
ally is a Jordan algebra and, by Proposition 2, that A has a unit. Let p denote
the algebra norm on A_C defined as in [6, Proposition 13.3]. Choose 0 < \(\alpha < 1 \)
such that \(x \in Inv(A) \) whenever \(||1-x|| < \alpha \). Put \(\delta = \frac{\rho}{2} \). For \(a+ib \in A_C \) such that
\(p(1-(a+ib)) < \delta \) we have max\(\{||1-a||, ||b||\} < \delta \), so \(||1-a|| < \delta < \alpha \);therefore, \(a \in Inv(A) \). Now
\[
||1 - (a + U_b(a^{-1}))|| \leq ||1 - a|| + ||U_b(a^{-1})|| \leq ||1 - a|| + 3||b||^2||a^{-1}||
\]
\[
\leq ||1 - a|| + \frac{3||b||^2}{1-||1-a||} < \delta + \frac{3\delta^2}{1-\delta} < \alpha ,
\]
which implies that \(a + U_b(a^{-1}) \in Inv(A) \). Next we shall prove
\[
U_{a+ib}(U_{a-b}(a-ib)^2)) = (a + U_b(a^{-1}))^2 .
\]
To this end note that if \(c = 1 + b \) then \(||1 - c|| < \alpha \), so \(c \in Inv(A) \). Also note that the above equality can be localized to the subalgebra B of A_C generated
by c, a, c^{-1}, and a^{-1}. By the Shirshov-Cohn theorem with inverses [18],
B is a special Jordan algebra. Now in terms of the associative product of any
associative envelop of B our equality is
\[
(a + ib)a^{-1}(a - ib)(a - ib)a^{-1}(a + ib) = (a + ba^{-1}b)^2 ,
\]
which can be easily verified. The equality just proved together with the fact that \(a + U_b(a^{-1}) \in \text{Inv}(A) \subseteq \text{Inv}(A_C) \) gives that \(a + bi \in \text{Inv}(A_C) \). Hence the unit is an interior point of \(\text{Inv}(A_C) \) and, by Proposition 1, \(A_C \) is a n.c.J. \(Q \)-algebra. The converse is an easy consequence of the fact that \(A \) is a full real subalgebra of \(A_C \).

Theorem 4. Let \(A \) be a n.c.J. normed algebra. The following are equivalent:

(i) \(A \) is a n.c.J. \(Q \)-algebra.

(ii) \(\rho (x) = r(x) \) for all \(x \) in \(A \).

(iii) \(\rho (x) \leq \|x\| \) for all \(x \) in \(A \).

(iv) \(A \) is a full subalgebra of its normed completion.

(v) \(A \) is a full subalgebra of some n.c.J. complete normed algebra.

(vi) Every element \(x \) in \(A \) with \(\|x\| < 1 \) is quasi-invertible in \(A \).

Proof. Suppose (i). Then there is some number \(\alpha > 0 \) such that \(x \in q - \text{Inv}(A) \) whenever \(\|x\| < \alpha \). By Propositions 2 and 3 we can assume that \(A \) is a complex Jordan \(Q \)-algebra with unit. Given \(x \) in \(A \) choose \(\lambda \in \mathbb{C} \) such that \(\|x\|/\alpha < |\lambda| \). Then \(\|x/\lambda\| < \alpha \), so \(1 - x/\lambda \in \text{Inv}(A) \); that is, \(\lambda \notin \text{sp}(x) \). This shows that \(\rho (x) \leq \|x\|/\alpha \). Repeating with \(x \) replaced by \(x^n \) \((n \geq 1)\), we obtain \(\rho (x^n) \leq \|x^n\|/\alpha \). Since \(\text{sp}(x^n) = \{\lambda^n : \lambda \in \text{sp}(x)\} \) [16, Theorem 1.1] it follows that \(\rho (x^n) = \rho (x)^n \). Now taking \(n \)th roots in the above inequality and letting \(n \to \infty \), we see that \(\rho (x) \leq r(x) \). Now if \(\hat{A} \) denotes the normed completion of \(A \), we have \(r(x) = \rho (x, \hat{A}) \). Since \(\rho (x, \hat{A}) \leq \rho (x) \), it follows that \(\rho (x) = r(x) \), so (ii) is obtained. Clearly (ii) implies (iii). Next suppose (iii). Since for \(z = a + x \) in \(A_1 \) we have \(\rho (z, A_1) \leq \rho (x) + |a| \), (iii) is valid for both \(A \) and \(A_1 \), so we can assume that \(A \) has a unit. Let \(\hat{A} \) denote the normed completion of \(A \) and choose \(a \in A \cap \text{Inv}(\hat{A}) \). Then \(U_a \) is a linear homeomorphism on \(\hat{A} \), and, in particular, \(U_a(A) \) is dense in \(A \). Therefore, there is \(b \in A \) such that \(\|1 - U_a(b)\| < 1 \); whence, \(\rho (1 - U_a(b)) < 1 \), so \(U_a(b) \in \text{Inv}(A) \), which implies that \(a \in \text{Inv}(A) \). We have proved that \(A \cap \text{Inv}(\hat{A}) \subseteq \text{Inv}(A) \). Since the opposite inclusion is always true, we have \(A \cap \text{Inv}(\hat{A}) = \text{Inv}(A) \) and (iv) follows. Clearly (iv) implies (v). Suppose now that \(A \) is a full subalgebra of a n.c.J. complete normed algebra \(J \). Then \(x \in q - \text{Inv}(J) \) whenever \(x \in J \) with \(\|x\| < 1 \), because \(J \) is complete. In particular, if \(x \in A \) and \(\|x\| < 1 \), then \(x \in A \cap q - \text{Inv}(J) = q - \text{Inv}(A) \) and (vi) follows. Finally, by Proposition 1, (vi) implies (i). □

As a clear consequence of (v) the spectrum of an element in a n.c.J. \(Q \)-algebra is a compact (nonempty) subset of \(\mathbb{C} \). For associative \(Q \)-algebras the equivalence of (i), (ii), and (iii) of Theorem 4 was proved by Yood [32, Lemma 2.1]. Also Palmer in [20, Theorem 3.1 and Proposition 5.10] states the associative version of Theorem 4. Next we are going to give a characterization of n.c.J. \(Q \)-algebras as those n.c.J. normed algebras in which the maximal modular inner ideals are closed.

A vector subspace \(M \) of a Jordan algebra \(A \) such that \(U_m(A) \subseteq M \) for all \(m \in M \) is called an inner ideal of \(A \). If, in addition, \(M \) is also a subalgebra of \(A \), then it is called a strict inner ideal of \(A \). Recall that for \(a, b \) in \(A \) the operator \(U_{a,b} \) is defined by \(U_{a,b} = (U_{a+b} - U_a - U_b)/2 \). The element \(U_{a,b}(x) \) is usually written as \(\{a, x, b\} \). A strict inner ideal \(M \) of \(A \) is called
x-modular for some \(x \in A \) when the following three conditions are satisfied:

(i) \(U_{1-x}(A) \subset M \).

(ii) \(\{1 - x, z, m\} \in M \) for all \(z \in A_1 \) and all \(m \in M \).

(iii) \(x^2 - x \in M \).

This concept of modularity in Jordan algebras is due to Hogben and McCrimmon \cite{13}. The next result has been used in \cite{9}, giving the clue for its proof in the case of Jordan-Banach algebras, although it has not been explicitly stated.

Proposition 5. The closure \(\overline{M} \) of a proper x-modular strict inner ideal \(M \) of a Jordan \(Q \)-algebra \(A \) is a proper x-modular strict inner ideal of \(A \).

Proof. Using the continuity of the product of \(A \), it is easily obtained that \(\overline{M} \) is an x-modular strict inner ideal of \(A \). Let us show it is proper. Choose \(m \in M \), and let \(z = x - m \). If \(\|z\| < 1 \), then by Theorem 4 we know that \(z \in q - \text{Inv}(A) \). If \(w \) is the quasi inverse of \(z \), then \(1 - z = U_{1-z}(1 - w) = U_{1-z}(1 - w^2) - U_{1-z}(w^2 - w) = 1 - U_{1-z}(w^2 - w) \), so \(z = U_{1-z}(t) \), where \(t = w^2 - w \in A \). Now

\[
z = U_{1-z}(t) = U_{1-x-m}(t) = U_{1-x}(t) + U_m(t) + 2U_{1-x,m}(t),
\]

and it follows that \(z \in M \), but then \(x \in M \), and this implies that \(M = A \) \cite[Proposition 3.1]{13}, which contradicts the assumption that \(M \) is proper. Hence it must be \(\|x - m\| \geq 1 \) for every \(m \in M \), so \(x \notin \overline{M} \). Thus \(\overline{M} \) is proper. \(\square \)

A maximal modular inner ideal of a Jordan algebra \(A \) is a strict inner ideal which is x-modular for some \(x \in A \) and maximal among all proper x-modular strict inner ideals of \(A \) (for \(x \) fixed). The maximal modular inner ideals of a n.c.J. algebra \(A \) are, by definition, the maximal modular inner ideals of the Jordan algebra \(A^+ \).

Proposition 6. Let \(A \) be a n.c.J. normed algebra. The following are equivalent:

(i) \(A \) is a n.c.J. \(Q \)-algebra.

(ii) The maximal modular inner ideals of \(A \) are closed.

Proof. As a consequence of Proposition 5 we have that (i) implies (ii). To prove the converse we can suppose that \(A \) is a Jordan algebra. Let \(\hat{A} \) denote the normed completion of \(A \). Choose \(x \in A \cap q - \text{Inv}(\hat{A}) \). Then \(1 - x \) is invertible in \(\hat{A}_1 \), so \(U_{1-x} \) is a homeomorphism on \(\hat{A}_1 \); in particular, \(U_{1-x}(A_1) \) is dense in \(A_1 \). Therefore, if \(z \in A \), there is a sequence \(\{\alpha_n + z_n\} \) in \(A_1 \) such that \(\lim\{U_{1-x}(\alpha_n + z_n)\} = z \). Since \(U_{1-x}(\alpha_n + z_n) \) can be written in the form \(\alpha_n + w_n \) with \(w_n \in A_1 \), it follows that \(\lim\{\alpha_n\} = 0 \), and we deduce that \(\lim\{U_{1-x}(z_n)\} = z \). Hence \(U_{1-x}(A) \) is dense in \(A \). Note that \(U_{1-x}(A) \subset A_i \), since \(A_i \) is an ideal of \(A_1 \). If \(U_{1-x}(A) \neq A \), then it follows from \cite[Remark 2.8]{13} that there is a maximal modular inner ideal \(M \) of \(A \) such that \(U_{1-x}(A) \subset M \). Since, by assumption, \(M \) is closed, we have a contradiction with the density of \(U_{1-x}(A) \) in \(A \). Hence \(U_{1-x}(A) = A \). It has been seen in the proof of Proposition 5 that the quasi inverse \(y \) of \(x \) is given by \(y = U_{1-y}(x^2 - x) = U_{1-x}^{-1}(x^2 - x) \), so it follows that \(y \) lies in \(A \). We have proved that \(A \) is a full subalgebra of \(\hat{A} \), and therefore \(A \) is a Jordan \(Q \)-algebra. \(\square \)

The maximal modular left or right ideals in associative algebras are also maximal modular inner ideals \cite[Example 3.3]{13}. In this respect the above
proof can be easily modified to show that, if A is a normed associative algebra and the maximal modular left ideals of A are closed, then A is an associative Q-algebra (see also [33, Theorem 2.9]).

Since for any element x in a n.c.J. Q-algebra we have $\rho(x) = r(x)$, it follows that homomorphisms of n.c.J. Q-algebras decrease the (geometric) spectral radius. Moreover, if $r(x) = 0$ then $\text{sp}(x) = \{0\}$, so x is quasi-invertible. Taking this into account, it is easily seen that the proof given by Aupetit [1] and the recent and more simple proof given by Ransford [23] of Johnson’s uniqueness of norm theorem yield immediately to the following result (see also [25, Proposition 3.1]). If X and Y are normed spaces and F is a linear mapping from X into Y, we denote by $S(F)$ (the separating subspace of F) the set of those y in Y for which there is a sequence $\{x_n\}$ in X such that $\lim{x_n} = 0$ and $\lim{F(x_n)} = y$. If A is a n.c.J. algebra, $\text{Rad}(A)$ means the Jacobson radical of A [19]; namely, $\text{Rad}(A)$ is the largest quasi-invertible ideal of A. If $\text{Rad}(A) = \{0\}$, A is called semisimple.

Proposition 7 [1, 23]. Let A and B be n.c.J. complex Q-algebras, and let F be a homomorphism from A into B. Then $r(b) = 0$ for every b in $S(F) \cap F(A)$. Moreover, if F is a surjective homomorphism, then $S(F) \subseteq \text{Rad}(B)$.

Suppose A is a n.c.J. Q-algebra, and let M be a closed ideal of A. Then the algebra A/M is a n.c.J. Q-algebra. (Indeed, if π denotes the canonical projection of A onto A/M, then π is open and $\pi(q - \text{Inv}(A)) \subseteq q - \text{Inv}(A/M)$. Hence we may apply Proposition 1 to A/M.) Moreover, if B is a semisimple n.c.J. algebra and ϕ is a homomorphism from A onto B, then $\text{Ker}(\phi)$ is closed (just use Theorem 4(vi) to obtain in the usual way that $\phi(\text{Ker}(\phi))$ is a quasi-invertible ideal of B). With Proposition 7 and these considerations the proof of the main result in [27] yields directly to the following result. Recall that a normed algebra $(A, \| \cdot \|)$ is said to have *minimality of norm topology* if any algebra norm on A, $| \cdot |$, minorizing $\| \cdot \|$, i.e., $| \cdot | \leq \alpha \| \cdot \|$ for some $\alpha > 0$, is actually equivalent to $\| \cdot \|$.

Theorem 8. Let A be a n.c.J. complex Q-algebra, and let B be a semisimple complete normed complex n.c.J. algebra with minimality of norm topology. Then every homomorphism from A onto B is continuous.

3. Algebra norms on noncommutative JB^*-algebras

A *not necessarily commutative* (for short n.c.) JB^*-algebra A is a complete normed n.c.J. complex algebra with (conjugate linear) algebra involution \dagger such that $\|U_a(a^\dagger)\| = \|a\|^3$ for all a in A. Thus C^*-algebras and (commutative) JB^*-algebras are particular types of n.c. JB^*-algebras. If A is a n.c. JB^*-algebra, then A^+ is a JB^*-algebra with the same norm and involution as those of A. JB^*-algebras were introduced by Kaplansky in 1976, and they have been extensively studied since the paper by Wright [31].

Lemma 9. If $| \cdot |$ is any algebra norm on a n.c. JB^*-algebra A, then $(A, | \cdot |)$ is a n.c.J. Q-algebra.

Proof. Since n.c.J. algebras are power-associative, the closed subalgebra of A generated by a symmetric element ($a = a^\dagger$) is a commutative C^*-algebra. Given a in A, we can consider the commutative C^*-algebra generated by the
symmetric element \(a^* \cdot a = \frac{1}{2}(aa^* + a^*a) \) and make use of a well-known result due to Kaplansky, according to which any algebra norm on a commutative \(C^* \)-algebra is greater than the original norm, to get that \(\|a^* \cdot a\| \leq \|a^* \cdot a\| \). Also it is known that \(\|a\|^2 \leq 2\|a^* \cdot a\| \) [21, Proposition 2.2]. So we have that \(\|a\|^2 \leq 2|a^* \cdot a| \leq 2|a^*| |a| \) for all \(a \) in \(A \). Hence \(\|a^n\|^2 \leq 2|a^n| |a^n| \) for all \(n \) in \(\mathbb{N} \), which implies that \((r_n||a||)^2 \leq r_n(a^*)r_n(a) \). Now, if \((C, \cdot \cdot) \) denotes the completion of \((A, \cdot \cdot) \), we have \(r_n(a) = \rho(a, C) \leq \rho(a, A) = r_n||a|| \) for all \(a \) in \(A \). Thus \((r_n||a||)^2 \leq r_n(a^*)r_n(a) \) and consequently \(r_n||a|| \leq r_n(a) \). We deduce that \(r_n(a) = r_n||a|| = \rho(a, A) \) for all \(a \) in \(A \), and by Theorem 4 we conclude that \((A, \cdot \cdot) \) is a n.c. Q-algebra. □

Theorem 10. The topology of the norm of a n.c. \(JB^* \)-algebra \(A \) is the smallest algebra normable topology on \(A \).

Proof. If \(\cdot \cdot \) is any algebra norm on \(A \), it has been shown in the proof of Lemma 9 that \(\|a\|^2 \leq 2|a^*| |a| \) for all \(a \) in \(A \). If we know additionally that \(\cdot \cdot \leq M\cdot\cdot \) for some nonnegative number \(M \), then \(\|a\|^2 \leq 2M\|a^*\| |a| = 2M|a||a| \), so \(\|a\| \leq 2M|a| \) for all \(a \) in \(A \). Hence the norm \(\cdot \cdot \) is equivalent to the norm of \(A \). Therefore, \((A, \|\cdot\|) \) has minimality of norm topology. Now, for an arbitrary algebra norm \(\cdot \cdot \) on \(A \), we can use Lemma 9 and apply Theorem 8 to the identity mapping from \((A, \cdot \cdot) \) into \((A, \|\cdot\|) \) to obtain that this mapping is continuous, which concludes the proof. □

If \(A \) is a \(C^* \)-algebra, then the particularization of Theorem 10 to the \(JB^* \)-algebra \(A^+ \) gives that any algebra norm on \(A^+ \) defines a topology on \(A \) which is stronger than the original one. This is an improvement of the classical result by Cleveland [8] which states the same for algebra norms on \(A \).

Unlike the preceding results, which are of an algebraic-topologic nature, the following one is geometric.

Let \(A \) be a complete normed complex nonassociative algebra with unit \(1 \) such that \(\|1\| = 1 \). Denote by \(A^* \) the dual Banach space of \(A \). For \(a \) in \(A \) the subset of \(\mathbb{C} \), \(V_{\|\cdot\|}(a) = \{f(a): f \in A^*, \|f\| = 1 = f(1)\} \) is called the numerical range of \(a \). The set of hermitian elements of \(A \), denoted by \(H(A) \), is defined as the set of those elements \(a \) in \(A \) such that \(V_{\|\cdot\|}(a) \subset \mathbb{R} \). If \(A = H(A) + iH(A) \), then \(A \) is called a \(V \)-algebra. The general nonassociative Vidav-Palmer theorem [24] says that the class of (nonassociative) \(V \)-algebras coincides with the one of unital n.c. \(JB^* \)-algebras.

Proposition 11. Every n.c. \(JB^* \)-algebra \(A \) has the property of minimality of the norm; that is, if \(\cdot \cdot \) is an algebra norm on \(A \) such that \(\cdot \cdot \leq \|\cdot\| \), then the equality \(\cdot \cdot = \|\cdot\| \) holds.

Proof. By Theorem 10 and the assumptions made, \(\cdot \cdot \) and \(\|\cdot\| \) are equivalent norms on \(A \), so \(\cdot \cdot \) is a complete norm on \(A \). Suppose first that \(A \) has a unit element \(1 \). \(\cdot \cdot \) being an algebra norm, we have \(1 \leq |1| \leq \|1\| = 1 \), so \(|1| = 1 \). Let \(\|\cdot\| \) and \(\cdot \cdot \) also denote the corresponding dual norms of \(\|\cdot\| \) and \(\cdot \cdot \). Then for \(f \) in \(A^* \) we have \(\|f\| \leq |f| \), and we deduce easily that \(V_{\|\cdot\|}(a) \subset V_{\|\cdot\|}(a) \) for all \(a \) in \(A \). Since \((A, \|\cdot\|) \) is a \(V \)-algebra, it follows that \((A, \cdot \cdot) \) is also a \(V \)-algebra, and, consequently, by the nonassociative Vidav-Palmer theorem, \((A, \cdot \cdot) \) is a n.c. \(JB^* \)-algebra. Since the norm of a n.c. \(JB^* \)-algebra is unique [31], we conclude that \(\cdot \cdot = \|\cdot\| \). If \(A \) has no unit element, then it is known that \((A^{**}, \|\cdot\|) \), with the Aren's product and a convenient involution which

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
extends that of \(A \), is a unital n.c. \(JB^* \)-algebra [21]. Since the bidual \(A^{**} \) of \(A \) is the same for both norms and \(| \cdot | \) is an algebra norm on \(A^{**} \) satisfying \(| \cdot | \leq \| \cdot \| \) on \(A^{**} \), it follows from what was previously seen that \(| \cdot | = \| \cdot \| \) on \(A^{**} \) and, in particular, \(| \cdot | = \| \cdot \| \) on \(A \). \(\square \)

Now we apply Theorem 10 and Proposition 11 to the study of the ranges of Jordan homomorphisms from \(C^* \)-algebras.

Corollary 12. Assume that a normed associative complex algebra \(B \) is the range of a continuous (resp. contractive) Jordan homomorphism from a \(C^* \)-algebra. Then \(B \) is bicontinuously (resp. isometrically) isomorphic to a \(C^* \)-algebra.

Proof. Let \(A \) be a \(C^* \)-algebra and \(\phi \) a Jordan homomorphism from \(A \) onto \(B \) under the assumptions in the statement. Since closed Jordan ideals of a \(C^* \)-algebra are associative ideals (see [7, Theorem 5.3.] or [21, Theorem 4.3]), \(A/\text{Ker}(\phi) \) is a \(C^* \)-algebra and we may assume that \(\phi \) is a one-to-one mapping. Then, by Theorem 10 (resp. Proposition 11) applied to the \(JB^* \)-algebra \(A^+ \), it follows that \(\phi \) is a bicontinuous (resp. isometric) Jordan isomorphism from \(A \) onto \(B \). Let \(C \) denote the associative complex algebra with vector space that of \(A \) and product \(\Box \) defined by \(x \Box y := \phi^{-1}(\phi(x)\phi(y)) \). Then \(C^+ (= A^+) \) is a \(JB^* \)-algebra under the norm and involution of \(A \), so, with the same norm and involution, \(C \) becomes a \(C^* \)-algebra [26, Theorem 2] and, clearly, \(\phi \) becomes a bicontinuous (resp. isometric) associative isomorphism from \(C \) onto \(B \). \(\square \)

Corollary 13. The range of any weakly compact Jordan homomorphism from a \(C^* \)-algebra into a normed algebra is finite dimensional.

Proof. If \(A \) is a \(C^* \)-algebra, \(B \) a normed algebra, and \(\phi \) a weakly compact Jordan homomorphism from \(A \) into \(B \), then, as above, \(A/\text{Ker}(\phi) \) is a \(C^* \)-algebra and, easily, the induced Jordan homomorphism \(A/\text{Ker}(\phi) \rightarrow B \) is weakly compact, so again we may assume that \(\phi \) is a one-to-one mapping. Now, by Theorem 10 applied to \(A^+ \), \(\phi \) is a weakly compact topological embedding, so \(A \) is a \(C^* \)-algebra with reflexive Banach space, and so \(A \) (and hence the range of \(\phi \)) is finite dimensional [28]. \(\square \)

Remark 14. The fact that weakly compact (associative) homomorphisms from \(C^* \)-algebras have finite-dimensional ranges was proved first in [12] as a consequence of a more general result, and later a very simple proof (that we imitate above) was obtained by Mathieu [17]. If \(A \) is a n.c. \(JB^* \)-algebra and \(\phi \) is any weakly compact homomorphism from \(A \) into a normed algebra \(B \), since \(A/\text{Ker}(\phi) \) is a n.c. \(JB^* \)-algebra [21, Corollary 1.11], to obtain some information about the range of \(\phi \) we may assume that \(\phi \) is a one-to-one mapping, and then, as above, the range of \(\phi \) is bicontinuously isomorphic to a n.c. \(JB^* \)-algebra with reflexive Banach space, namely, a finite product of simple n.c. \(JB^* \)-algebras which are either finite dimensional or quadratic [22, Theorem 3.5] (note that infinite-dimensional quadratic \(JB^* \)-algebras do exist and the identity mapping on such a \(JB^* \)-algebra is weakly compact). This result on the range of a weakly compact homomorphism from a n.c. \(JB^* \)-algebra was proved first in [11] by using Theorem 10 and a nonassociative extension of the above-mentioned general result in [12]. The proof given above (also suggested in [11]) is analogous to Mathieu’s proof for the particular case of \(C^* \)-algebras.
References

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

Current address, L. Rico: Departamento de Didáctica de la Matemática, Facultad de Ciencias de la Educación, Universidad de Granada, 18077-Granada, Spain

E-mail address, A. Rodríguez: apalacios@ugr.es