A NORM-PRESERVING H^∞ EXTENSION PROBLEM

ZHIMIN YAN

(Communicated by Eric Bedford)

Abstract. First we establish a Schwarz lemma for holomorphic mappings between bounded symmetric domains. Then, as an application, we solve a norm-preserving extension problem.

Introduction

The classical Schwarz lemma asserts that if f is a holomorphic function from the unit disk U into U, then $|f'(0)| \leq 1$ and the equality holds if and only if $f(z) = cz$ with $|c| = 1$. A generalization to the high-dimensional case is given in [R]. Namely, if F is a holomorphic mapping from the unit ball in \mathbb{C}^n into the unit ball of \mathbb{C}^m, then the complex Jacobian $F'(0)$ is a linear operator of norm at most one, and if $F'(0)$ is an isometry of \mathbb{C}^n into \mathbb{C}^m, then $F(z) = F'(0)z$. (The norm of the linear operator $F'(0)$ equal to one is insufficient for F to be a linear mapping.) See [R, Chapter 8]. In this paper, we shall generalize this result to the case when F is a holomorphic mapping from one bounded symmetric domain to another one. As an application, we also consider the following norm-preserving H^∞ extension problem; that is, for two bounded symmetric domains D_1 and D_2, determine which holomorphic mappings $\Phi : D_1 \to D_2$ have the property that to every $f \in H^\infty(D_1)$ corresponds a $g \in H^\infty(D_2)$ such that

1. Some background about bounded symmetric domains

A finite-dimensional complex vector space V is a Hermitian Jordan Triple System if V is endowed with a real trilinear map $\{\cdot,\cdot,\cdot\} : V \times V \times V \to V$,
Given \(u, v \in V \), define the operator \(D(u, v^*) \) on \(V \) by
\[
D(u, v^*)z = \{uv^*z\}.
\]
A Hermitian Jordan Triple System is positive definite if the trace \(\tau(u, v) \) of the \(C \)-linear transformation \(D(u, v^*) \) is a positive definite Hermitian form on \(V \). A positive definite Hermitian Jordan Triple System will be abbreviated as PDHJTS. In the following, \(V \) will always denote a PDHJTS.

It is known that the Jordan unit ball
\[
D = \{ z \in V \mid \| D(z, z^*) \| < 1 \}
\]
is a bounded symmetric domain in \(V \) where \(\| \| \) is the operator norm. Conversely, any bounded symmetric domain can be realized as a Jordan unit ball in some PDHJTS \(V \) (see [L]).

An element \(e \) in \(V \) is a tripotent if \(\{ee^*e\} = e \). Two tripotents \(e, c \) are orthogonal if \(D(e, c^*) = 0 \). A tripotent is primitive if \(e \) is not a sum of two orthogonal tripotents. A frame of \(V \) is a maximal orthogonal system of primitive tripotents. Two frames of \(V \) always have the same number of elements, and the number is the rank of \(V \) which is also equal to the rank of the bounded symmetric domain \(D \). Throughout this paper, \(r(D) \) will denote the rank of a bounded symmetric domain \(D \).

For the Jordan unit ball \(D \) in \(V \), let \(G = \text{Aut}_0(D) \) be the identity component of the automorphism group of \(D \) and \(K \) the isotropy subgroup of \(G \) at 0. Suppose that \(\{e_1, \ldots, e_r\} \) is a frame. Then every element \(z \in V \) can be written as
\[
z = k \cdot \sum_{i=1}^{r} \lambda_i e_i,
\]
for some \(k \in K \) with \(\lambda_1 \geq \cdots \geq \lambda_r \geq 0 \). Furthermore, for any \(z \in V \), there exists a frame \(\{c_1, \ldots, c_r\} \) such that
\[
z = \sum_{i=1}^{r} \lambda_i c_i.
\]
Then \(z \in D \) if and only if \(|\lambda_i| < 1, \ i = 1, \ldots, r \).

For a tripotent \(e \), let \(V_\alpha(e) \) be the \(\alpha \)-eigenspace of the operator \(D(e, e^*) \)
\[
\{ v \in V \mid (D(e, e^*)v = \alpha v) \}.
\]
The only possible nonzero eigenspaces are \(V_1(e) \), \(V_{1/2}(e) \), and \(V_0(e) \). Then \(V_0(e) \) and \(V_1(e) \) are positive definite Hermitian Jordan subtriple of \(V \). A tripotent \(e \) is of rank \(j \) if \(V_1(e) \) is of rank \(j \).

Suppose that \(\{e_1, \ldots, e_r\} \) is a frame. Then \(V \) has the following Peirce decomposition:
\[
V = \sum_{0 \leq i \leq j \leq r} V_{i<j}
\]
where \(V_{ii} = V_1(e_i) \ (i = 1, \ldots, r) \); \(V_{ij} = V_{1/2}(e_i) \cap V_{1/2}(e_j) \ (1 \leq i < j \leq r) \);
\(V_{0i} = V_{1/2}(e_i) \cap \bigcap_{j \neq i} V_0(e_j) \ (i = 1, \ldots, r) \); and \(V_{00} = 0 \).
For $z, w \in V$, the Bergman operators $B(z, w)$ on V are defined by

$$B(z, w) = I - 2D(z, w^*) + Q_z Q_w$$

where I is the identity map on V and $Q_z u = \{zu^* z\}$ for all $z, u \in V$.

Fix a frame $\{e_1, \ldots, e_r\}$ in the following.

If $z = \sum_{i=1}^r \lambda_i e_i$, $\lambda_i \in \mathbb{C}$, and $\lambda_0 = 0$, then, for $y \in V_{ij}$ ($0 \leq i \leq j \leq r$),

$$B(z, z)y = (1 - |\lambda_j|^2)(1 - |\lambda_i|^2)y.$$

Let $\langle \cdot, \cdot \rangle$ be the Hermitian inner product on V which is a scalar multiple of the trace τ such that $\langle e, e \rangle = 1$ for a primitive tripotent e. Throughout this paper, $\| \|$ will denote the Euclidean norm $\| \|_2$ on V. Suppose the rank of V is r. Then the Jordan unit ball D of V is contained in the Euclidean ball $B_{\sqrt{r}} = \{z \in V \mid |z| < \sqrt{r} \}$, and the Shilov boundary S of D is the intersection of $\partial B_{\sqrt{r}}$ and D. In particular, this implies that $\eta \in \overline{D}$ is on S if and only if $|\eta| = \sqrt{r}$.

A point z is on the topological boundary ∂D of D if and only if there exists a frame $\{c_1, \ldots, c_r\}$ such that $z = \sum_{i=1}^r \lambda_i c_i$ with $\lambda_1 = \cdots = \lambda_r = 1 > \lambda_{s+1} \geq \cdots \geq 0$. In particular, z is on S if and only if z is a tripotent of rank r, and z is on ∂D with $|z| = 1$ if and only if z is a primitive tripotent.

For details about this section, see [L].

2. A Schwarz Lemma

In this section, we want to establish a Schwarz lemma for holomorphic mappings from one bounded symmetric domain into another one. First, we need two known results.

An open set E is star-shaped circular if $az \in E$ whenever $z \in E$ and $a \in \mathbb{C}$, $|a| \leq 1$.

Lemma 1 ([R, Theorem 8.1.2]). Suppose that

(i) D_1 and D_2 are two star-shaped circular regions in \mathbb{C}^n and \mathbb{C}^m respectively,

(ii) D_2 is convex and bounded,

(iii) $F : D_1 \rightarrow D_2$ is holomorphic.

Then

(a) $F'(0)$ maps D_1 into D_2, and

(b) $F(rD_1) \subset rD_2$ $(0 < r \leq 1)$ if $F(0) = 0$.

For $a \in D$, let φ_a be the holomorphic automorphism of D which interchanges 0 and a. Then one has (see [AY])

Lemma 2. If D is the Jordan unit ball of V and $a \in D$, then the complex Jacobian of φ_a is given by

$$\varphi'_a(z) = -B(a, a)^{1/2}B(z, a)^{-1} \forall z \in D.$$

Remark. In the proof of Theorem 3, we only need the fact that $\varphi'_a(a)$ can be written as a composition of a unitary operator and $B(a, a)^{-1/2}$. This fact follows easily from [L, Lemma 2.11].

From now on, whenever we say that D_1 and D_2 are two bounded symmetric domains, we always assume that they are realized as two Jordan unit balls of PDHJS's V_1 and V_2 respectively.

Now we have the following Schwarz lemma.
Theorem 3. Suppose that D_1 and D_2 are two bounded symmetric domains in V_1 and V_2 respectively, with $r(D_1) \geq r(D_2)$; $F : D_1 \to D_2$ is a holomorphic mapping; and $F'(0)$ is an isometry of V_1 into V_2. Then

(i) $r(D_1) = r(D_2)$;
(ii) $\|F(z)\| \leq \|z\|$, $\forall z \in D_1$;
(iii) $F(z) = F'(0)z$, $\forall z \in D_1$.

Proof. Let r_1 be the rank of D_i and S_i the Shilov boundary of D_i ($i = 1, 2$).

First, we show that $r_1 = r_2$ and $F(0) = 0$. Then (ii) follows from Lemma 1(b).

Let $a = F(0)$ and $G(z) = \varphi_a \circ F : D_1 \to D_2$ where $\varphi_a \in \text{Aut}(D_2)$, which interchanges 0 and a. Then $G(0) = 0$.

By Lemma 1(a), $G'(0)z \in D_2 \\forall z \in D_1$. This yields that

\begin{equation}
|\varphi_a'(a)F'(0)z| = |G'(0)z| \leq \sqrt{r_2}.
\end{equation}

On the other hand, by (6) we have that $\varphi_a'(a) = -B(a, a)^{-1/2}$ which, together with (5), implies

\begin{equation}
|\varphi_a'(a)F'(0)\eta| \geq |F'(0)\eta|.
\end{equation}

Now since $F'(0)$ is an isometry, for $\eta \in S_1$,

\begin{equation}
|F'(0)\eta| = \sqrt{r_1}.
\end{equation}

(7)-(9) give that $r_1 = r_2$ and

\begin{equation}
|\varphi_a'(a)G'(0)\eta| = |F'(0)\eta| = \sqrt{r_1}.
\end{equation}

Let $\{c_1, \ldots, c_r\}$ be a frame of V_2 such that $a = \sum_{i=1}^r \lambda_ic_i$ with $\lambda_1 \geq \cdots \geq \lambda_j > 0 = \lambda_{j+1} = \cdots = \lambda_r$. From (5) we conclude that, for $w \in V_2$, $|B(a, a)^{-1/2}w| = |w|$ can happen if and only if $w \in V_0(c_1 + \cdots + c_j)$. Now it follows from (10) that $F'(0)\eta \in V_0(c_1 + \cdots + c_j) \cap D_2$. Hence $F'(0)\eta$ is in the closure of the Jordan unit ball of the positive definite Hermitian Jordan subtriple system $V_0(c_1 + \cdots + c_j)$ of V which is of rank $r_2 - j$. Consequently, if $j \geq 1$, $|F'(0)\eta| \leq \sqrt{r_2} - j < \sqrt{r_2} = \sqrt{r_1}$ which contradicts (9). This proves $a = 0$.

Second, we show that, for every $\eta \in S_1$ and every $\lambda \in U$, $F(\lambda \eta) = \lambda F'(0)\eta$, which will imply (iii) since F is holomorphic.

Let $A = F'(0)$ and $r = r_1 = r_2$. Then $A\eta \in S_2$, for $\eta \in S_1$, since $|A\eta| = |\eta| = \sqrt{r}$. Now, for any $w \in D_2$, $\alpha \in S_2$, since $|w| < \sqrt{r}$, we have

\[|\langle w, \alpha \rangle| < r.\]

For $\eta \in S_1$, we define an analytic function h from the unit disk U in C into U by

\[h(\lambda) = \frac{1}{r}(F(\lambda \eta), A\eta).\]

Then $h(0) = 0$, and $h'(0) = \frac{1}{r}(F'(0)\eta, A\eta) = 1$. This leads, by the classical Schwarz lemma, to $h(\lambda) = \lambda$. Thus we obtain

\begin{equation}
\lambda = \langle \frac{1}{r}F(\lambda \eta), A\eta \rangle.
\end{equation}

(ii) shows

\[|F(\lambda \eta)| \leq |\lambda||\eta| \leq \sqrt{|\lambda|}.\]
Therefore, we have that \(\frac{1}{\lambda} F(\lambda \eta) \in D_2 \subset B_{\sqrt{r}} \) for \(\lambda \neq 0 \). Since \(A \eta \in S_2 \subset \partial B_{\sqrt{r}} \), one can easily see that (11) can hold if and only if \(\frac{1}{\lambda} F(\lambda \eta) = A \eta \).

Therefore, we have obtained that

\[
F(\lambda \eta) = \lambda A \eta = \lambda F'(0) \eta \quad \forall \eta \in S_1, \lambda \in U,
\]

proving the theorem.

Remark. We can easily construct a holomorphic mapping \(F \) from the unit ball of \(C^2 \) into an irreducible bounded symmetric domain of rank two in \(C^4 \) such that \(F'(0) \) is an isometry of \(C^2 \) into \(C^4 \), but \(F \) fails to be a linear mapping.

For another version of the Schwarz lemma for a bounded symmetric domain, see [K].

3. AN EXTENSION PROBLEM

Let \(D_1 \) and \(D_2 \) be two bounded symmetric domains. A holomorphic mapping \(\Phi : D_1 \to D_2 \) is said to have the norm-preserving \(H^\infty \) extension property if, for every \(f \in H^\infty(D_1) \), there exists \(g \in H^\infty(D_2) \)

(*)

such that (a) \(g \circ \Phi = f \) and (b) \(||g||_\infty = ||f||_\infty \).

Remark. To study such \(\Phi \)'s, it is enough to study those \(\Phi \)'s with \(\Phi(0) = 0 \), since it is obvious that if \(\Phi \) has the norm-preserving \(H^\infty \) extension property, so is \(\varphi \circ \Phi \) where \(\varphi \in \text{Aut}(D_2) \).

Now we state our main result.

Theorem 4. Suppose that \(D_1 \) and \(D_2 \) are two bounded symmetric domains in \(V_1 \) and \(V_2 \) respectively. For a holomorphic mapping \(\Phi : D_1 \to D_2 \) with \(r(D_1) \geq r(D_2) \), the following are equivalent:

(i) \(\Phi \) has the property (*)

(ii) \(\Phi = \varphi \circ \mathcal{L} \) where \(\varphi \) is an automorphism of \(D_2 \) and \(\mathcal{L} : D_1 \to D_2 \) is a linear isometry of \(V_1 \) into \(V_2 \) mapping all primitive tripotents in \(V_1 \) into primitive tripotents in \(V_2 \);

(iii) there is a multiplicative linear operator \(E : H^\infty(D_1) \to H^\infty(D_2) \) such that \((Ef) \circ \Phi = f, \forall f \in H^\infty(D_1) \).

Proof. We divide the proof into several steps. By the remark before the theorem, it can be assumed that \(\Phi(0) = 0 \). In this case \(\Phi \) becomes linear.

Step 1. We show (iii) implies (i). It remains to show \(||Ef||_\infty = ||f||_\infty \). The identity \((Ef) \circ \Phi = f \) implies \(f \equiv 0 \) if \(Ef \equiv 0 \). Now \(Ef = E(f \cdot 1) = (Ef) \cdot (E1) \) gives that \(E1 = 1 \). Suppose that \(||Ef||_\infty > ||f||_\infty \). Then there exists a sequence \(z_n \) in \(D_2 \) such that \(Ef(z_n) \to c \) with \(|c| = ||Ef||_\infty \). Since

\[
(f - c)^{-1} \in H^\infty(D_1), \quad E \left(\frac{1}{f - c} \right) \in H^\infty(D_2)
\]

and we also have

\[
1 = E \left(\frac{1}{f - c} \cdot (f - c) \right) = E \left(\frac{1}{f - c} \right) E(f - c).
\]

However, this implies

\[
|E \left(\frac{1}{f - c} \right) (z_n)| \to \infty
\]

since \(E(f - c)(z_n) \to 0 \); we get a contradiction.
Step 2. We show (ii) implies (iii). Let \(P \) be the orthogonal projection of \(V_2 \) onto \(\Phi(V_1) \). We claim that
\[
P(D_2) \subset \Phi(D_1).
\]
In fact, for \(w \in D_2, P(w) \) can be written as
\[
P(w) = \sum_{i=1}^{r} \lambda_i \Phi(c_i)
\]
for some frame of \(V_1 \) with \(\lambda_1 \geq \cdots \geq \lambda_r \geq 0 \). Since \(\Phi(c_1) \) is a primitive tripotent in \(V_2 \), by Lemma 5, \(\lambda_1 = \langle w, \Phi(c_1) \rangle < 1 \), which shows that \(P(w) \in \Phi(D_1) \).

Now define
\[
(Ef)(w) = f(A^{-1} P(w)), \quad w \in D_2,
\]
for all \(F \in H^\infty(D_1) \) where \(A = \Phi'(0) \). It is clear that \(E \) satisfies (iii).

Step 3. We show that (i) implies (ii) by establishing some lemmas in which we assume that \(\Phi \) satisfies (i).

Lemma 5. Let \(e \) be any primitive tripotent of \(V \) and \(z \in D \). Then \(|\langle z, e \rangle| < 1 \).

Proof. First, \(|\langle z, e \rangle|^2 \leq \langle z, \{ ee^* z \} \rangle = \langle z, \{ ze^* e \} \rangle \).

Next, by [L], Lemma 2.6 (4),
\[
\langle z, \{ ze^* e \} \rangle = \langle \{ ez^* z \}, e \rangle = \langle \{ zz^* e \}, e \rangle,
\]
which is not greater than \(||D(z, z)|| < 1 \).

Lemma 6. Let \(\zeta \) be a primitive tripotent in \(V_1 \). Then \(|\Phi'(0)\zeta| \geq 1 \).

Proof. Define a holomorphic function \(f(z) \) on \(D_1 \) by \(f(z) = \langle z, \zeta \rangle \). Then Lemma 5 yields \(||f||_\infty = 1 \). Since \(\Phi \) satisfies (i), there exists a \(g \in H^\infty(D_2) \) such that \(g(\Phi(z)) = \langle z, \zeta \rangle \) with \(||g||_\infty = 1 \). Then Lemma 1(a) implies that
\[
|g'(0)| \leq 1.
\]
Since \(\langle \zeta, \zeta \rangle = 1 \), for all \(\lambda \in U \), \(g(\Phi(\lambda \zeta)) = \lambda \langle \zeta, \zeta \rangle = \lambda \) which leads to \(g'(0) \Phi'(0) \zeta = 1 \). Now combining inequality (12) and \(1 = |g'(0)\Phi'(0)\zeta| = |g'(0)||\Phi'(0)\zeta| \) gives
\[
|\Phi'(0)\zeta| \geq 1
\]
which is not greater than \(||D(z, z)|| < 1 \).

Lemma 7. Let \(\zeta \) be a tripotent of rank \(r_1 = r(D_1) \). Then \(\Phi'(0) \leq \sqrt{r_1} \).

Proof. For \(\lambda \in U \), define \(G(\lambda) = \Phi(\lambda \zeta) \). Then \(G(\lambda) \in D_2 \subset B_{\sqrt{r_2}} \), and \(G(0) = 0 \). It follows from Lemma 1(b) that \(|\lambda| |\Phi'(0)| = |G'(0)\lambda| \leq |\lambda| \sqrt{r_2} \leq |\lambda| \sqrt{r_1} \), proving the lemma.

Let \(\{c_1, \ldots, c_r\} \) be a frame of \(V_1 \). Define
\[
h_{kl} = \langle \Phi'(0)c_k, \Phi'(0)c_l \rangle, \quad k, l = 1, \ldots, r.
\]

Lemma 8. For any frame \(\{c_1, \ldots, c_r\} \) of \(V_1 \), \(h_{kl} = \delta_{kl} \), \(k, l = 1, \ldots, r \). Consequently, \(\Phi \) is an isometry of \(V_1 \) into \(V_2 \).

Proof. We use induction on \(r = r(D_1) \).

(i) If \(r = 1 \), the lemma follows from Lemmas 6 and 7.

(ii) Assume the lemma holds for \(r - 1 \).
For \(s = 1, \ldots, r \), we define a function \(H_s \) of \(\theta_1, \ldots, \theta_s \in \mathbb{R} \)
\[
H_s(\theta_1, \ldots, \theta_s) = \sum_{k \neq l}^s e^{i\theta_k} \cdot h_{kl} \cdot e^{-i\theta_l}.
\]

For any \(\theta_1, \ldots, \theta_r \in \mathbb{R} \), \(\sum_{k=1}^r h_{kk} + H_r(\theta_1, \ldots, \theta_r) \leq r \). Lemma 7 gives
\[
\sum_{k=1}^r h_{kk} + H_r(\theta_1, \ldots, \theta_r) \leq r. \tag{13}
\]

On the other hand, Lemma 6 yields \(\sum_{k=1}^r h_{kk} = r \). Thus we have
\[
H_r(\theta_1, \ldots, \theta_r) = H_{r-1}(\theta_1, \ldots, \theta_{r-1}) \tag{14}
\]
\[
+ \sum_{k=1}^r e^{i\theta_k} \cdot h_{kr} \cdot e^{-i\theta_r} + \sum_{k=1}^r e^{i\theta_r} \cdot h_{rl} \cdot e^{-i\theta_l} \leq 0.
\]

Then the induction assumption implies \(H_{r-1}(\theta_1, \ldots, \theta_{r-1}) = 0 \), which, together with (14), leads to
\[
\sum_{k=1}^r e^{i\theta_k} \cdot h_{kr} \cdot e^{-i\theta_r} + \sum_{l=1}^r e^{i\theta_r} \cdot h_{rl} \cdot e^{-i\theta_l} \leq 0 \quad \forall \theta_1, \ldots, \theta_r \in \mathbb{R}. \tag{15}
\]

Now replacing \(\theta_r \) in the above by \(\theta_r + \pi \) reverses the inequality. Hence
\[
H_r(\theta_1, \ldots, \theta_r) = 0 \quad \forall \theta_1, \ldots, \theta_r \in \mathbb{R}. \tag{16}
\]

Now (13), (15), and Lemma 6 show that \(h_{kk} = 1, k = 1, \ldots, r \). Finally,
\[
h_{kl} = \frac{1}{2\pi} \int_0^{2\pi} H_r(\theta_1, \ldots, \theta_r) e^{i\theta_l} e^{-i\theta_k} d\theta_1 d\theta_2 = 0, \quad k \neq l,
\]
completing the proof.

Lemma 9. (a) \(\Phi(D_1) = D_2 \cap \Phi(V_1) \); (b) \(\Phi(\partial D_1) \subset \partial D_2 \).

Proof. (a) It is enough to show that \(D_2 \cap \Phi(V_1) \subset \Phi(D_1) \). Suppose that there exists a \(v \in D_2 \cap \Phi(V_1) \) but \(v \notin \Phi(D_1) \). We note that \(\Phi(D_1) \) is convex and open in \(\Phi(V_1) \) and \(\partial(\Phi(D_1)) = \Phi(\partial D_1) \). Therefore, we can find a \(\zeta \in \partial D_1 \) and a \(t > 1 \) with \(v = t\Phi(\zeta) \). Then \(\zeta \) can be written as \(\zeta = c_1 + \sum_{i=2} c_i \) where \(\{c_1, \ldots, c_r\} \) is a frame of \(V_1 \). Define a holomorphic function \(f(z) \) on \(D_1 \) by \(f(z) = \langle z, c_1 \rangle \). Lemma 5 asserts \(\|f\|_\infty = 1 \). To \(f(z) \) corresponds a \(g \in H^\infty(D_2) \) with \(\|g\|_\infty = 1 \) such that
\[
g(\Phi(z)) = \langle z, c_1 \rangle, \quad \forall z \in D_1.
\]
In particular,
\[
g(\Phi(\lambda \zeta)) = \lambda \langle \zeta, c_1 \rangle = \lambda, \quad \forall \lambda \in U.
\]
The linearity of \(\Phi \) implies that
\[
g(\lambda v) = g(\Phi(\lambda \zeta)) = \lambda, \quad \forall \lambda \in U. \tag{16}
\]
Since \(D_2 \) is star-shaped circular, \(\lambda v \in D_2 \cap \Phi(V_1) \), \(\forall \lambda \in U \). Actually, (16) holds for all \(\lambda \) with \(|\lambda| \leq t \) since \(g \) is holomorphic on \(D_2 \). This yields \(g(v) = t > 1 \), which contradicts \(\|g\|_\infty = 1 \).

(a) implies (b) since \(\Phi \) is one-to-one.
Lemma 10. If ζ is a primitive tripotent in V_1, then $\Phi(\zeta)$ is a primitive tripotent in V_2.

Proof. By Lemma 8, Φ is an isometry of V_1 into V_2. Hence, $|\Phi(\zeta)| = |\zeta| = 1$. By Lemma 9(b), $\Phi(\zeta) \in \partial D_2$. Now we see that $\Phi(\zeta)$ is a primitive tripotent.

Finally, Lemmas 8 and 10 show that (i) implies (ii).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CALIFORNIA 94720