Nonexistence of weakly almost complex structures on Grassmannians
HTML articles powered by AMS MathViewer
- by Zi Zhou Tang
- Proc. Amer. Math. Soc. 121 (1994), 1267-1270
- DOI: https://doi.org/10.1090/S0002-9939-1994-1198462-5
- PDF | Request permission
Abstract:
In this paper we prove that, for $2 \leq k \leq n/2$, the unoriented Grassmann manifold ${G_k}({\mathbb {R}^n})$ admits a weakly almost complex structure if and only if $n = 2k = 4 \; \text {or} \; 6$; for $3 \leq k \leq \frac {n}{2}$, none of the oriented Grassmann manifolds ${\tilde G_k}({\mathbb {R}^n})$—except ${\tilde G_3}({\mathbb {R}^6})$ and a few as yet undecided ones—admits a weakly almost complex structure.References
- A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409–448 (French). MR 58213, DOI 10.2307/2372495
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800, DOI 10.2307/2372795
- Terence Heaps, Almost complex structures on eight- and ten-dimensional manifolds, Topology 9 (1970), 111–119. MR 264692, DOI 10.1016/0040-9383(70)90031-5
- Kee Yuen Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305–314. MR 431194, DOI 10.1090/S0002-9947-1975-0431194-X
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Parameswaran Sankaran, Nonexistence of almost complex structures on Grassmann manifolds, Proc. Amer. Math. Soc. 113 (1991), no. 1, 297–302. MR 1043420, DOI 10.1090/S0002-9939-1991-1043420-1
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1267-1270
- MSC: Primary 57R15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1198462-5
- MathSciNet review: 1198462