Growth property for the minimal surface equation in unbounded domains
HTML articles powered by AMS MathViewer
- by Jenn-Fang Hwang
- Proc. Amer. Math. Soc. 121 (1994), 1027-1037
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204379-X
- PDF | Request permission
Abstract:
Here we prove that if u satisfies the minimal surface equation in an unbounded domain $\Omega$ which is properly contained in a half plane, then the growth rate of u is of the same order as the shape of $\Omega$ and $u{|_{\partial \Omega }}$.References
- Robert Finn, Equilibrium capillary surfaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. MR 816345, DOI 10.1007/978-1-4613-8584-4
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Jenn-Fang Hwang, Phragmén-Lindelöf theorem for the minimal surface equation, Proc. Amer. Math. Soc. 104 (1988), no. 3, 825–828. MR 964864, DOI 10.1090/S0002-9939-1988-0964864-X
- Johannes C. C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71 (1965), 195–270. MR 173993, DOI 10.1090/S0002-9904-1965-11276-9 —, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin, Heidelberg, and New York, 1975.
- Robert Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0256278
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1027-1037
- MSC: Primary 35B30; Secondary 35J60, 49Q05, 53A10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204379-X
- MathSciNet review: 1204379