A duality theorem for interpolation methods associated to polygons
HTML articles powered by AMS MathViewer
- by Fernando Cobos and Pedro Fernández-Martínez
- Proc. Amer. Math. Soc. 121 (1994), 1093-1101
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209420-6
- PDF | Request permission
Abstract:
We investigate dual spaces of interpolation spaces defined by means of polygons. We first show that dual spaces may fail to be intermediate spaces with respect to the dual N-tuple, and then we prove that dual spaces of J-spaces can be identified with closed subspaces of K-spaces generated by the dual N-tuple.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- Fernando Cobos and Pedro Fernández-Martínez, Reiteration and a Wolff theorem for interpolation methods defined by means of polygons, Studia Math. 102 (1992), no. 3, 239–256. MR 1170554, DOI 10.4064/sm-102-3-239-256
- Fernando Cobos, Pedro Fernández-Martínez, and Tomas Schonbek, Norm estimates for interpolation methods defined by means of polygons, J. Approx. Theory 80 (1995), no. 3, 321–351. MR 1320157, DOI 10.1006/jath.1995.1021
- Fernando Cobos, Thomas Kühn, and Tomas Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), no. 2, 274–313. MR 1165856, DOI 10.1016/0022-1236(92)90049-O
- Fernando Cobos and Jaak Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. (3) 63 (1991), no. 2, 371–400. MR 1114514, DOI 10.1112/plms/s3-63.2.371
- R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 43 (1982), no. 3, 203–229. MR 648799, DOI 10.1016/0001-8708(82)90034-2
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- Michael Cwikel and Svante Janson, Real and complex interpolation methods for finite and infinite families of Banach spaces, Adv. in Math. 66 (1987), no. 3, 234–290. MR 915856, DOI 10.1016/0001-8708(87)90036-3
- Giovanni Dore, Davide Guidetti, and Alberto Venni, Some properties of the sum and the intersection of normed spaces, Atti Sem. Mat. Fis. Univ. Modena 31 (1982), no. 2, 325–331 (1984) (English, with Italian summary). MR 742678
- Giovanni Dore, Davide Guidetti, and Alberto Venni, Complex interpolation for $2^N$ Banach spaces, Rend. Sem. Mat. Univ. Padova 76 (1986), 1–36 (English, with Italian summary). MR 881557
- Dicesar Lass Fernandez, Interpolation of $2^{n}$ Banach spaces, Studia Math. 65 (1979), no. 2, 175–201. MR 557490, DOI 10.4064/sm-65-2-175-201
- Dicesar Lass Fernandez, On the duality of interpolation spaces of several Banach spaces, Acta Sci. Math. (Szeged) 44 (1982), no. 1-2, 43–51. MR 660511
- Dicesar Lass Fernandez, Interpolation of $2^d$ Banach spaces and the Calderón spaces $X(E)$, Proc. London Math. Soc. (3) 56 (1988), no. 1, 143–162. MR 915534, DOI 10.1112/plms/s3-56.1.143
- Jaak Peetre, Duality for Fernandez type spaces, Math. Nachr. 119 (1984), 231–238. MR 774193, DOI 10.1002/mana.19841190122
- Gunnar Sparr, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. (4) 99 (1974), 247–316. MR 372641, DOI 10.1007/BF02413728
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1093-1101
- MSC: Primary 46M35; Secondary 46B70
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209420-6
- MathSciNet review: 1209420