Prime factor algebras of the coordinate ring of quantum matrices
HTML articles powered by AMS MathViewer
- by K. R. Goodearl and E. S. Letzter
- Proc. Amer. Math. Soc. 121 (1994), 1017-1025
- DOI: https://doi.org/10.1090/S0002-9939-1994-1211579-1
- PDF | Request permission
Abstract:
It is proved that every prime factor algebra of the coordinate ring ${\mathcal {O}_q}({M_n}(k))$ of quantum $n \times n$ matrices over a field k is an integral domain (albeit not necessarily commutative) when q is not a root of unity. The same conclusion follows for the quantum groups ${\mathcal {O}_q}({\text {SL}_n}(k))$ and ${\mathcal {O}_q}({\text {GL}_n}(k))$. The proof uses a q-analog of Sigurdsson’s theorem bounding the Goldie ranks of prime factors of differential operator rings; this q-analog in turn is based on results from the authors’ recent work on q-skew polynomial rings.References
- Michael Artin, William Schelter, and John Tate, Quantum deformations of $\textrm {GL}_n$, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895. MR 1127037, DOI 10.1002/cpa.3160440804
- Allen D. Bell, Goldie dimension of prime factors of polynomial and skew polynomial rings, J. London Math. Soc. (2) 29 (1984), no. 3, 418–424. MR 754928, DOI 10.1112/jlms/s2-29.3.418
- Alfred Goldie and Gerhard Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974/75), 337–345. MR 357500, DOI 10.1112/jlms/s2-9.2.337
- K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J. Algebra 150 (1992), no. 2, 324–377. MR 1176901, DOI 10.1016/S0021-8693(05)80036-5
- K. R. Goodearl, Uniform ranks of prime factors of skew polynomial rings, Ring theory (Granville, OH, 1992) World Sci. Publ., River Edge, NJ, 1993, pp. 182–199. MR 1344230
- K. R. Goodearl and E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521, vi+106. MR 1197519, DOI 10.1090/memo/0521
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Timothy J. Hodges and Thierry Levasseur, Primitive ideals of $\textbf {C}_q[\textrm {SL}(3)]$, Comm. Math. Phys. 156 (1993), no. 3, 581–605. MR 1240587
- Sei-Qwon Oh, Finite-dimensional simple modules over the coordinate ring of quantum matrices, Bull. London Math. Soc. 25 (1993), no. 5, 427–430. MR 1233404, DOI 10.1112/blms/25.5.427
- A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR 839644, DOI 10.1017/CBO9780511661938
- Edward S. Letzter, Finite correspondence of spectra in Noetherian ring extensions, Proc. Amer. Math. Soc. 116 (1992), no. 3, 645–652. MR 1098402, DOI 10.1090/S0002-9939-1992-1098402-1
- T. Levasseur and J. T. Stafford, The quantum coordinate ring of the special linear group, J. Pure Appl. Algebra 86 (1993), no. 2, 181–186. MR 1215645, DOI 10.1016/0022-4049(93)90102-Y
- Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm. Math. Phys. 123 (1989), no. 1, 163–175. MR 1002037
- J. C. McConnell and J. J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) 38 (1988), no. 1, 47–55. MR 949080, DOI 10.1112/jlms/s2-38.1.47
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572 S.-Q. Oh, Doctoral dissertation, Univ. of Cincinnati, 1992.
- Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439, vi+157. MR 1048073, DOI 10.1090/memo/0439
- J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), no. 3, 385–447. MR 491797, DOI 10.1112/plms/s3-36.3.385
- Gunnar Sigurdsson, Differential operator rings whose prime factors have bounded Goldie dimension, Arch. Math. (Basel) 42 (1984), no. 4, 348–353. MR 753356, DOI 10.1007/BF01246126
- S. P. Smith, Quantum groups: an introduction and survey for ring theorists, Noncommutative rings (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 24, Springer, New York, 1992, pp. 131–178. MR 1230220, DOI 10.1007/978-1-4613-9736-6_{6} A. Sudbury, Consistent multiparameter quantisation of $GL(n)$, J. Phys. A 23 (1990), L697-L704.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1017-1025
- MSC: Primary 16W30; Secondary 16S36, 17B37
- DOI: https://doi.org/10.1090/S0002-9939-1994-1211579-1
- MathSciNet review: 1211579