On a complementarity problem in Banach space
HTML articles powered by AMS MathViewer
- by Sudarsan Nanda
- Proc. Amer. Math. Soc. 121 (1994), 1203-1205
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216822-0
- PDF | Request permission
Abstract:
The paper gives a result on the existence and uniqueness of solutions for the complementarity problems associated with hemicontinuous monotone mappings of convex cones. We correct the assumptions and proof given in an earlier paper of A. T. Dash and S. Nanda [A complementarity problem in mathematical programming in Banach space, J. Math. Anal. Appl. 98 (1984), 328-331].References
- Felix E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780–785. MR 180882, DOI 10.1090/S0002-9904-1965-11391-X
- A. T. Dash and S. Nanda, A complementarity problem in mathematical programming in Banach space, J. Math. Anal. Appl. 98 (1984), no. 2, 328–331. MR 730509, DOI 10.1016/0022-247X(84)90251-8
- Umberto Mosco, A remark on a theorem of F. E. Browder, J. Math. Anal. Appl. 20 (1967), 90–93. MR 220111, DOI 10.1016/0022-247X(67)90108-4
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 1203-1205
- MSC: Primary 47H05; Secondary 49J40
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216822-0
- MathSciNet review: 1216822