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CORRIGENDUM TO
"ON HAUSDORFF DIMENSION OF RECURRENT NET FRACTALS"

SERGIO STELLA

(Communicated by Kenneth Meyer)

In the proof of Theorem 3.1 in [6] a characterization of Larma's finite-

dimensional metric spaces due to Rogers [5] was taken for granted and used.

Since this characterization is not true in general, in this note we add a further

hypothesis on the complete metric space treated in [6] which guarantees the
validity of Theorem 3.1. Moreover, some natural conditions tacitly assumed in

[6] are made explicit, thus extending the geometric analysis. Proposition 1.1 is
correctly stated and improved.

By defining in [6] net fractals in a complete metric space, we intended to

provide a procedure for generating sets which look like fractals. They are ex-

pected to be, topologically, at least perfect subsets of the given metric space and
in particular uncountable sets. In [6] we, tacitly, assumed (without explicitly

stating) that

(A) yrnint(Ax¡n)¿0   Vi|«,

which guarantees that JV has the above topological properties. Further (A) is a

natural condition and necessary to avoid that the geometric procedure described
in [6] collapses. In fact, if (A) is not assumed the set J¥ might be contained

in the boundary set B := Uj|„^i|n\int(/l¡|„) ; thus, by standard results (see

[3]), in that case we will have 7777d(J7) = 0, for any dimension s for which

^¿(jY) < oo (here %7d and %7d represent the Hausdorff measures with respect
to the metrics d and D used in [6]). Therefore, conditions (2) and (3) in [6]

would become insignificant within the scope of the dimension estimate of Jv.
See also the discussion about net fractals generated by 'proper constructions'

in [1], which is the reference given in [6] for the original definition.
An analogous assumption was made in [6, §4] for the self-similar set K.

It is natural to assume, as it happens in most concrete examples, that K is
not completely contained in the boundary of the open set O, for otherwise,

K would be the kernel of a geometric scheme does not satisfy condition (A);

consequently, by the above remarks, it would be ^d(K) = 0 for any s such

that %d(K) < oo. In particular, this is the case when s is the similarity

dimension (see [2]) of K. Hence, when K ç 0\0, in general we have

dim//(A^) < similarity dimension of K.
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Although Proposition 1.1 in [6] is not used to get the main results, it must be

noted that as proved in [6] the topology of (Q, D) is always finer than that
of (Q, d) but that the topological equivalence, there stated, may fail on the

boundary set B r\jV. However, for any dimension 5 for which 7%^(jV) < oo ,

applying again the remarks above, we get the topological equivalence of d and

D modulo a subset of zero ^-measure and thus of zero ^-measure. In

particular, when 7?77fj(jV) < oo, and this is the case for net fractals satisfying

the hypothesis of Theorems 2.2 and 3.1, the space (JV, d) is the disjoint union

of an ultrametric subspace and a subset of zero ^-measure. In particular,

J7 has the same Hausdorff measure of an

ultametric, topologically zero-dimensional, totally disconnected subspace,

showing that from a measure-theoretic point of view net fractals satisfying the

hypothesis of Theorem 3.1 are always ultrametric net fractals.

In the proof of Theorem 3.1 we employed a characterization of Larman's

finite dimensionality due to Rogers [5, p. 104 1.1 and p. 122, Theorem 57 con-

dition (b)], taking for granted that if 7??"(A) = 0 for some positive integer n ,

then A is finite dimensional in the sense of Larman [4].

While the converse is always true (see [4, corollary to Theorem 4]), this im-

plication is in general false. In fact, for any Hausdorff function h(t), any set

A Ç ii contains a countable subset A' with h(A) = h(A'), in Larman's nota-

tion. But A and hence A' may not be finite dimensional.

Let J7' := {Xj|„}j|„, where {x¡|„}¡|„ is the family of point centers of the

open balls involved in condition (3) in [6], and call it the expanded net fractal

associated with JV.
We have J7' = ^"U{x¡|„}¡|„ . In fact, clearly yT ç J7' and if x is an accumu-

lation point of {Xi|„|}i|„ , we can find a sequence (xX\n^x)k with lim^oo xX\n^) =

x. Since the coordinates i¡ of the curtailed indexes \\n(k) can assume only a

finite number of values, by a standard diagonal argument, we can determine an

index, say j, such that (x¡\„^))¡ is a subsequence of (x^^))*: and j|«(/+ 1) is

an extension of j\n(l). It follows that x = lim/_00 Xj|„(/) = fl^li ^¡\n e 717 and
thus the claim also follows. Moreover, an analogous argument shows that JV'

is sequentially compact and thus compact. Further %7$(J7') = %7S(JV) since

{■Xi|n}i|« is countable.

The proof of Theorem 1.3 remains essentially the same if we can use the
property

the expanded net fractal jV' is a ß -space.

In general complete metric spaces, in order to guarantee that J7' is a ß-

space, we need a further condition concerning the relative position of the points

{*¡|/i}¡|n • However, we are not concerned here with a suitable modification of

the basic requirements (1), (2), and (3) in [6] for a net fractal. A complete anal-

ysis will appear elsewhere. But we indicate a class of metric spaces, significant
from a geometric point of view, in which the above property is automatically

satisfied. It is the class oflocally finite-dimensional metric spaces, i.e., the spaces

in which every point admits a neighbourhood which is finite dimensional in the

sense of Larman [4]. In fact, in these spaces, as we can see using Theorems 11

and 12 in [4], any compact subset is a /?-space.
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Among the spaces included in this large class, we find the Euclidean spaces

and the Riemannian manifolds of class 2.

On page 397 replace lines 11-15 by:
If UnAi\„(i) t¿ 0, then we can find a ball B(x, 2p) in J7' such that If and

^i|/i(0 vxJ7' are contained in it. Since J7' is a /?-space (for instance with triple

(M, S, a)), it follows that at most Mq disjoint balls of radius pak intersect

B(x, 2p) where q satisfies (2a)Q < ak+x < (2a)9~x. Since akp < Xhp, at

most Mq balls of radius Xhp can meet B(x, 2p), hence at most Mq of the

sets {Ah.inU)} can meet U.

On page 397 in lines 18 and 20 replace Mk by Mq .
On page 399 in line 35, replace '0 to be bounded' by '0 to be bounded and

regular open'.
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