LIFTING VECTOR-VALUED MEROMORPHIC FUNCTIONS IN INFINITE DIMENSIONS

NGUYEN VAN KHUE AND NGUYEN THU NGA

(Communicated by Clifford J. Earle, Jr.)

Abstract. It is shown that the lifting problem for Fréchet-valued meromorphic functions on open subsets of a (DFN)-space has a solution.

Lifting holomorphic functions in infinite dimensions has been investigated by some authors. The problem for vector-valued meromorphic functions on complex manifolds was studied in [6]. The aim of this paper is to prove that the lifting problem has a solution for Fréchet-valued meromorphic functions on open subsets of a (DFN)-space.

1. Preliminaries

We shall use the standard notation from the theory of locally convex spaces as presented in the books of Pietsch [7] and Schaefer [8]. All locally convex spaces are assumed to be complex vector spaces and Hausdorff.

For a locally convex space E, we denote by $\mathcal{U}(E)$ the set consisting of all balanced convex neighbourhoods of zero in E. Let $U \in \mathcal{U}(E)$ and p_U denote the Minkowski functional on E associated to U. Then E_U denotes the completion of the canonical normed space $E/\text{Ker} p_U$. The canonical map from E into E_U is written by π_U.

2. Holomorphic and meromorphic functions

Let E and F be locally convex spaces and $D \subseteq E$ be open. A map $f: D \to F$ is called holomorphic if f is continuous and $f|D \cap V$ is holomorphic for every finite dimensional subspace V of E.

Now a holomorphic function $f: D_0 \to F$, where D_0 is a dense open subset of D, is said to be meromorphic on D if for every $z \in D$ there exists a neighbourhood U of z in D and holomorphic functions $g: U \to F$, $\sigma: U \to \mathbb{C}$ such that

$$f|U \cap D_0 = g/\sigma|U \cap D_0 \quad \text{with} \quad \sigma \neq 0.$$
Theorem 1. Let S be a continuous linear map of a Fréchet space E onto a Fréchet space F and let D be an open subset of a (DFN)-space P. Then for every F-valued meromorphic f on D there exists an E-valued meromorphic function g on D such that $Sg = f$.

To prove the theorem we need the following.

Lemma 2. Every holomorphic function on an open subset of a (DFN)-space with values in a Fréchet space F can be factorized through a compact map from a Banach space into F.

Proof. Consider an open set D in a (DFN)-space P and a holomorphic function f on D with values in F.

(i) Let $z \in D$. Since D is σ-compact [5], it can be exhausted by an increasing sequence of compact sets $\{K_n\}$, with $z \in K_1$. Let $\{V_n\}$ be a decreasing neighbourhood basis of zero in F. For each $n \geq 1$ there exists $U_n \in \mathcal{U}(P)$ and $d_n > 0$ such that

$$K_n + U_n \subseteq D \quad \text{and} \quad f(K_n + U_n) \subseteq d_nV_n.$$

Set

$$U = \bigcap_{n \geq 1} (K_n + U_n).$$

Since

$$K_n \cap U = \bigcap_{1 \leq k \leq n} (K_k + U_k) \cap K_n$$

and since $\bigcap_{1 \leq k \leq n} (K_k + U_k)$ is a neighbourhood of z in P, it follows that $K_n \cap U$ is a neighbourhood of z in K_n for every $n \geq 1$. On the other hand, since D is a k-space [5], U is a neighbourhood of z in D. From the inclusion

$$f(U) \subseteq f(K_n + U_n) \subseteq d_nV_n \quad \text{for every } n \geq 1$$

we obtain the boundedness of $f(U)$.

Consider the Taylor expansion of f at z:

$$f(z + h) = \sum_{n \geq 0} P_nf(z)(h),$$

where

$$P_nf(z)(h) = \frac{1}{2\pi i} \int_{|\lambda| = 2} f(z + \lambda h)/\lambda^{n+1} \, d\lambda$$

for $h \in V$, $V \in \mathcal{U}(P)$, $z + 2V \subseteq U$. Set

$$B = \overline{\text{conv}} \bigcup_{n \geq 0} P_nf(z)(V).$$

Then B is a balanced convex closed set in F and f induces a holomorphic function on $\pi_V(z + V)$ with values in the canonical Banach space $F(B)$ spanned by B.

(ii) By (i) we can find a countable open cover of D, $\{\tilde{U}_i = z_i + U_i\}$, $U_i \in \mathcal{U}(P)$, a sequence of balanced convex bounded closed sets in F, $\{B_i\}$, and a sequence of holomorphic functions $f_i: \pi_{U_i}(\tilde{U}_i) \to F(B_i)$ such that

$$f_i\pi_{U_i} = f|\tilde{U}_i \quad \text{for every } i \geq 1.$$
Take two sequences \(\{\lambda_i\} \downarrow 0 \) and \(\{\mu_i\} \uparrow \infty \) such that
\[
B = \text{conv} \bigcup_{i \geq 1} \lambda_i B_i \quad \text{is bounded in } F
\]
and
\[
U = \bigcap_{i \geq 1} \mu_i U_i \in \mathcal{U}(P) .
\]
Such sequences exist by [4] for \(\{\lambda_i\} \) and [5] for \(\{\mu_i\} \). Since the canonical map from \(F(\lambda_i B_i) \) into \(F(B) \) is continuous for every \(i \geq 1 \), and \(\{\pi_U(\tilde{U}_i)\} \) is an open cover of \(\pi_U(D) \) in \(P/\text{Ker} p_U \), it follows that the sequence \(\{f_i\} \) defines an \(F(B) \)-valued holomorphic function \(g \) on \(\pi_U(D) \) with \(g \pi_U = f \).

(iii) Let \(\tilde{g} \) be a holomorphic extension of \(g \) to a neighbourhood \(\tilde{D}_U \) of \(\pi_U(D) \) in \(P_U \). Take \(V \in \mathcal{U}(P) \), \(V \subseteq U \) such that the canonical map \(\pi_{V,U}: P_V \to P_U \) is compact. Cover \(\tilde{D}_V = \pi_{V,U}^{-1}(\tilde{D}_U) \) by a sequence of bounded open sets in \(P_V \), \(\{W_i\} \), such that \(\pi_{V,U}(W_i) \) is relatively compact in \(\tilde{D}_U \) for every \(i \geq 1 \). Then \(A_i = g \pi_{V,U}(W_i) \) for every \(i \geq 1 \) is relatively compact in \(F(B) \). Take again a sequence \(\{\alpha_i\} \downarrow 0 \) such that
\[
A = \text{conv} \bigcup_{i \geq 1} \alpha_i A_i
\]
is compact in \(F(B) \). It is easy to see that \(\tilde{g} \pi_{V,U}: \tilde{D}_V \to F(A) \) is holomorphic. Hence \(f \) can be factorized through the compact map \(F(A) \to F \). The lemma is thus proved.

3. Proof of Theorem 1

Cover \(D \) by a sequence of open subsets \(\{\tilde{U}_i\} \) of \(D \) such that \(f|\tilde{U}_i \) can be written in the form \(h_i/\sigma_i \), where \(h_i \) and \(\sigma_i \) are holomorphic functions on \(\tilde{U}_i \) with values in \(F \) and \(\mathbb{C} \), respectively. By Lemma 2, for each \(i \geq 1 \) we can find \(U_i \in \mathcal{U}(P) \) and \(B_i \), a balanced convex compact set in \(F \) such that \(h_i \) and \(\sigma_i \) are factorized through \(\pi_{U_i}: \tilde{U}_i \to \pi_{U_i}(\tilde{U}_i) \) and \(F(B_i) \to F \). Take two sequences \(\{\lambda_i\} \downarrow 0 \) and \(\{\mu_i\} \uparrow \infty \) such that
\[
B = \text{conv} \bigcup_{i \geq 1} \lambda_i B_i \quad \text{is compact in } F
\]
and
\[
U = \bigcap_{i \geq 1} \mu_i U_i \in \mathcal{U}(P) .
\]
This implies that the two sequences \(\{h_i\} \) and \(\{\sigma_i\} \) define a meromorphic function \(g \) on a neighbourhood \(\tilde{D}_U \) of \(\pi_U(D) \) in \(P_U \) with \(f = g \pi_U \). By [1] there exists a balanced convex compact set \(A \) in \(E \) such that \(S(A) = B \).

Cover \(\tilde{D}_U \) by a sequence of open sets \(\{W_j\} \) in \(\tilde{D}_U \) such that for each \(j \geq 1 \) there exist bounded holomorphic functions \(g_j \) and \(\sigma_j \) on \(W_j \) with values in \(F(B) \) and \(\mathbb{C} \), respectively, with \(g_j W_j = g_j/\sigma_j \), \(\sigma_j \neq 0 \). Let \(V \in \mathcal{U}(P) \), \(V \subseteq U \) such that \(T = \pi_{V,U} \) is nuclear. Thus \(T \) can be written in the form
\[
T(x) = \sum_{k \geq 1} \lambda_k(x)e_k
\]
with \(a = \sum_{k \geq 1} \| \lambda_k \| e_k \| < \infty \). Fix an index \(j \). For each \(x \in T^{-1}(W_j) \), set
\(2r_{j,x} = p_U(Tx, \partial W_j) > 0 \). Consider the Taylor expansion of \(g_j \) at \(T(x) \):
\[
g_j(Tx + z) = \sum_{n \geq 0} P_n g_j(Tx)(z)
\]
for \(\| z \| < 2r_{j,x} \), \(z \in P_U \), where
\[
P_n g_j(Tx)(z) = \frac{1}{2\pi i} \int_{|\lambda| = r_{j,x}} g_j(Tx + \lambda z)/\lambda^{n+1} d\lambda
\]
for \(\| z \| \leq 1 \), \(z \in P_U \). We have
\[
\| P_n g_j(Tx) \| \leq M_j/(r_{j,x})^n \quad \text{with} \quad M_j = \sup\{ \| g_j(z) \| : z \in W_j \}.
\]
Therefore
\[
\sum_{n \geq 0} \sum_{k_1, \ldots, k_n \geq 1} (\delta_{j,x})^n \| \lambda_{k_1} \| \| e_{k_1} \| \cdots \| \lambda_{k_n} \| \| e_{k_n} \| \\
\times \| P_n g_j(Tx)(e_{k_1}/\| e_{k_1} \|, \ldots, e_{k_n}/\| e_{k_n} \|) \|
\leq M_j \sum_{n \geq 0} (1/n!)(\delta_{j,x} n/r_{j,x})^n \left(\sum_{k \geq 1} \| \lambda_k \| \| e_k \| \right)^n
\]
\[
= M_j \sum_{n \geq 0} (1/n!)(\delta_{j,x} nna/r_{j,x})^n < \infty \quad \text{with} \quad \delta_{j,x} = r_{j,x}/2ae.
\]
It follows that \(g_jT|x + \delta_{j,x}B_V \), where \(B_V \) is the unit ball in \(P_V \), can be written in the form
\[
g_jT(z) = \sum_{\alpha \in \mathcal{A}} \lambda_\alpha (z - x)a_\alpha^{j,x}
\]
for \(z \in P_V \), \(\| z - x \| < \delta_{j,x} \), where
\[
\mathcal{A} = \{ \alpha \in (\mathbb{Z}^+)^N : \alpha_j \neq 0 \ \text{for only finitely many} \ j \in \mathbb{N} \},
\]
\[
\lambda_\alpha = \lambda_{\alpha_1} \cdots \lambda_{\alpha_n}, \ a_\alpha^{j,x} = P_n g_j(Tx)(e_{\alpha_1}, \ldots, e_{\alpha_n}),
\]
\[
\alpha = (\alpha_1, \ldots, \alpha_n, 0, \ldots),
\]
and
\[
\sum_{n \geq 0} (\delta_{j,x})^n \| \lambda_\alpha \| \| a_\alpha^{j,x} \| < \infty.
\]
Thus there exist \(x_{j,k} \in T^{-1}(W_j) \), \(\delta_{j,k} > 0 \), \(j, k = 1, 2, \ldots, \) such that \(\{ x_{j,k} + \frac{1}{2} \delta_{j,k} B_V \} \) is an open cover of \(T^{-1}(W_j) \) and
\[
\sum_{n \geq 0} (\delta_{j,k})^n \| \lambda_\alpha \| \| a_\alpha^{j,k} \| < \infty, \quad a_\alpha^{j,k} = a_\alpha^{j,x_{j,k}}
\]
with \((g_jT)(x) = \sum_{\alpha \in \mathcal{A}} \lambda_\alpha (x - x_{j,k})a_\alpha^{j,k} \) for \(x \in x_{j,k} + \delta_{j,k} B_V \).

For each \(n \geq 1 \), set \(A_n = \{ \alpha \in \mathcal{A} : \max \alpha_j \leq n \} \) and
\[
S_n^{j,k}(x) = \sum_{\alpha \in A_n} \lambda_\alpha (x - x_{j,k})a_\alpha^{j,k}
\]
for \(x \in x_{j,k} + \delta_{j,k} B_V \).
Let $\varepsilon > 0$ be given. Take $m \in \mathbb{N}$ such that

$$\sum_{i > m} \|\lambda_i\|\|e_i\| < \varepsilon.$$

We have

$$\left\| \sum_{\alpha \in I} \lambda_{\alpha}(x - x_{j,k})a_{\alpha,j,k} - S_{m}^{j,k}(x) \right\|$$

$$\leq \max_{\alpha_j > m, \alpha > 0} (\delta_{j,k})^n \|\lambda_{\alpha_1}\| \cdots \|\lambda_{\alpha_n}\| \|a_{\alpha,j,k}\|$$

$$\leq (M\varepsilon/a) \sum_{n \geq 0} (\delta_{j,k}(n/r_{j,k}, x_{j,k})^n (1/n!) \left(\sum_{i \geq 1} \|\lambda_i\|\|e_i\| \right)^n$$

$$= (M\varepsilon/a) \sum_{n \geq 0} 1/n!(n/2a)^n.$$

Thus $S_{n}^{j,k} \to g_{jT}$ uniformly on $x_{j,k} + \delta_{j,k}B_{V}$ for $j, k \geq 1$ as $n \to \infty$. Applying the method of Bishop [2] to the sequence $\{S_{n}^{j,k}\}, j, k \geq 1$, we can find a sequence of disjoint 1-dimensional projections P_{q}^{n} in $F(B)$ such that

$$S_{n}^{j,k} = \sum_{q \geq 1} P_{q}^{n} S_{n}^{j,k} = \sum_{q \geq 1} h_{q,j,k}^{n,j,k} u_{q}^{n}$$

and

$$\|u_{q}^{n}\| = 1, \quad \|P_{q}^{n}\| \leq 2^{\log 2} q, \quad P_{q}^{n}(u_{q}^{n}) = u_{q}^{n}$$

$$\sup_{n \geq 1} \sum_{q \geq 1} \|h_{q,j,k}^{n,j,k}\|_{x_{j,k} + \delta_{j,k}B_{V}} < \infty$$

for $j, k \geq 1$, where $\tilde{\delta}_{j,k} = \frac{1}{2}\delta_{j,k}$ and $\|h_{q,j,k}^{n,j,k}\|_{x_{j,k} + \delta_{j,k}B_{V}}$ denotes the sup-norm of $h_{q,j,k}^{n,j,k}$ on $x_{j,k} + \tilde{\delta}_{j,k}B_{V}$.

Since $S(A) = B$, the map S induces a continuous linear map \tilde{S} from $E(A)$ onto $F(B)$. Thus the open mapping theorem gives a constant $C > 0$ such that for each (n, q) there exists $u_{q}^{n} \in E(A)$ for which $\tilde{S}(u_{q}^{n}) = u_{q}^{n}$ with $\|u_{q}^{n}\| \leq C\|v_{q}^{n}\|$ for $n, q \geq 1$.

Set

$$\tilde{S}_{n}^{j,k}(x) = \sum_{q \geq 1} h_{q,j,k}^{n,j,k} u_{q}^{n}$$

for $x \in x_{j,k} + \tilde{\delta}_{j,k}B_{V}$. Then

$$\sup_{n \geq 1} \{||\tilde{S}_{n}^{j,k}(x)||: x \in x_{j,k} + \tilde{\delta}_{j,k}B_{V}\}$$

$$\leq C \sup_{n \geq 1} \sum_{q \geq 1} \|h_{q,j,k}^{n,j,k}\|_{x_{j,k} + \delta_{j,k}B_{V}} < \infty.$$

Thus the sequence $\{\tilde{S}_{n}^{j,k}\}_{n \geq 1}$ is bounded in $\mathcal{O}(x_{j,k} + \tilde{\delta}_{j,k}B_{V}, E(A))$, the space of holomorphic functions on $x_{j,k} + \tilde{\delta}_{j,k}B_{V}$ with values in $E(A)$ equipped with
the compact-open topology. From the compactness of the canonical map \(E(A) \to E \), we can assume that \(\{ \tilde{S}^{i,k}_n \}_{n \geq 1} \) converges to \(\tilde{S}^{i,k} \) in \(\mathcal{O}(x_j,k + \delta_j,k B_V, E) \) as \(n \to \infty \) for all \(j, k \geq 1 \). Moreover we assume also that the sequences \(\{ v^n_q \}, \{ p^n_q \}, \) and \(\{ h^{n,j,k}_q \} \) converge to \(v_q, p_q \) and \(h^{i,j,k}_q \) in \(F, \text{Hom}(F(B), F) \), the space of continuous linear maps from \(F(B) \) into \(F \), and \(\mathcal{O}(x_j,k + \delta_j,k B_V) \), respectively, as \(n \to \infty \) for all \(j, k, q \geq 1 \). On the other hand, from the relations

\[P^n_s v^n_q = 0 \quad \text{if} \quad s \neq q \quad \text{and} \quad P^n_s v^n_s = v^n_s \]

we have

\[
\lim_{n \to \infty} P^n_s \sigma_j g_j T = \lim_{n \to \infty} P^n_s \sigma_j s^{i,k}_n \\
= \lim_{n \to \infty} \sum_{q \geq 1} P^n_s \sigma_j h^{n,i,k}_q v^n_q = \lim_{n \to \infty} \sigma_j h^{n,i,k}_n v^n_s = \sigma_j h^{i,j,k}_s v_s.
\]

Similarly

\[
\lim_{n \to \infty} P^n_s \sigma_i g_j T = \lim_{n \to \infty} P^n_s \sigma_i s^{i,l}_n = \sigma_i h^{i,l}_s v_s.
\]

Hence

\[\sigma_j h^{i,j,k}_s = \sigma_i h^{i,l}_s \quad \text{for all} \quad i, j, k, l \geq 1. \]

This yields

\[\sigma_i \tilde{S}^{i,k} = \sigma_j \tilde{S}^{i,l} \]

on \((x_j,k + \delta_j,k B_V) \cap (x_i,l + \delta_i,l B_V) \) for all \(i, j, k, l \geq 1 \).

Thus the system \(\{ \tilde{S}^{i,j,k}/\sigma_j \} \) defines an \(E \)-valued meromorphic function \(g \) on \(D \) such that \(Sg = f \). The theorem is proved.

ACKNOWLEDGMENT

The authors are grateful to the referee for comments and suggestions.

REFERENCES

6. N. V. Khue, On meromorphic functions with values in locally convex spaces, Studia Math. 73 (1982), 201–211.