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(Communicated by Palle E. T. Jorgensen)

Abstract. A theory of real Jordan triples and real bounded symmetric domains

in finite dimensions was developed by Loos. Upmeier has proposed a definition

of a real 7ß*-triple in arbitrary dimensions. These spaces include real C-

algebras and JB*-triples considered as vector spaces over the reals and have

the property that their open unit balls are real bounded symmetric domains.

This, together with the observation that many of the more recent techniques in

Jordan theory rely on functional analysis and algebra rather than holomorphy,

suggests that it may be possible to develop a real theory and to explore its

relationship with the complex theory.

In this paper we employ a Banach algebraic approach to real Banach Jordan

triples. Because of our recent observation on commutative 7fi*-triples (see

§2), we can now propose a new definition of a real ./¿"-triple, which we call

a J*B-triple. Our 7*5-triples include real C*-algebras and complex JB*-

triples. Our main theorem is a structure theorem of Gelfand-Naimark type for
commutative 7*ß-triples.

1. Real Banach Jordan triples

Definition 1.1. A Banach Jordan triple is a real or complex Banach space U

equipped with a continuous bilinear (sesquilinear in the complex case) map

U x U 9 (x, y) * xDy £ S?iU)

such that with {xyz} := xDy(z) we have

(1) {xyz} = {zyx},

(2) {x, y, {uvz}} + {u, {yxv}, z} = {{xyu} ,v,z} + {u,v, {xyz}}.

A Banach Jordan triple U over C is said to be a JB*-triple if
(a) for any x £ U the operator xDx from U to U (that is, xDx(y) =

{xxy} , y £ U) is hermitian (i.e., exp z'ixDx is an isometry for all real t) with

nonnegative spectrum,

(b) the following norm condition holds

(3) ||xDx|| = ||x||2.
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136 T. C. DANG AND BERNARD RUSSO

We note that equations (1) and (2) are the defining algebraic identities for a

Jordan triple system.

Our first result was originally stated with some extra hypothesis. The au-

thors wish to thank Jonathan Arazy for pointing this out and for suggesting the

following proof.

Theorem 1.2. Let U be a complex Banach Jordan triple. Suppose that

(1) ||{xxx}|| = ||x||3;

(2) ||{xyz}||<||x||||y||||z||;

(3) U is positive, i.e., o>{[/)(xDx) c [0, oo) for each x £ U.

Then U is a JB*-triple.

Proof. We only need to show that xDx is hermitian for each x £ U.

Since ô := z'xDx is a continuous derivation, a := etS is a continuous auto-

morphism for each real t. Thus for each x £ U

||a(x)||3 = \\{a(x), a(x), a(x)}\\ = \\a({xxx})\\ < ||a|| ||x||\

and therefore, by iteration,

H^II^IHI^IIxH;

that is, \\a\\ < 1.   D

The terminology in the next definition was motivated by [1], and the spectral

conditions were inspired by [7].

Definition 1.3. A J*B-triple is a real Banach space A equipped with a structure

of a real Jordan triple system which satisfies

(1) ||{xxx}|| = ||x||3;
(2) ||{xyz}||<||x||||y||||z||;

(3) o^,A)(xDx) C [0, oo) for x £ A ;

(4) o^.AxUy - yUx) c z'R for x, y e A .

The following proposition shows that over the complex field /5*-triples are

the same as 7*5-triples.

Proposition 1.4. Let U be a complex Banach Jordan triple.

(a) If U is a JB*-triple, then U is a J*B-triple.
(b) Suppose that U, considered a real Banach Jordan triple, is a J*B-triple.

Then U is a JB*-triple.

Proof, (a) A /5*-triple satisfies (2) by [3, Corollary 3]. This, together with
||xDx|| = ||x||2, implies (1). Thus it suffices to prove the two spectral condi-

tions. Let T denote either xDx or xDy - yDx. Since U is a /J5*-triple,
the spectrum of T with respect to 2C(U) consists entirely of boundary points.

Moreover, denoting by -2r(í/) the Banach algebra of real linear bounded oper-

ators on U, we trivially have &(U) c -Sr([/) , so (&(U))C c (=2r(C/))c , and
therefore, by [4, 9D]

ahwSTï C a(^(U))c(T) = ah(U)iT) = °3>(U)(T) U Os>tu)(T).
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REAL BANACH JORDAN TRIPLES 137

(b) In order to apply Theorem 1.2 we only need to show that o^{U)(uDu) > 0

for each u £ U. With T = wDw, we have1

°&tu)(T) C o^{U)(T) U as¡>(u)(T) = o(^(U))c(T) = o{äil{u))c(T) c [0, oo).

This completes the proof.   D

Recall that a closed subtriple of a /5*-triple is a /5*-triple. Using the
following fact we can give another natural example of a J*B-Xúole.

Remark 1.5. A closed subtriple B of a /*ß-triple A is a J*B-tûple. In par-
ticular, a closed real subtriple of a JB*-\ñ\ile is a /*5-triple.

Proof. The norm conditions are automatically satisfied, so it suffices to prove
the spectral conditions.

As above, let T denote either xDx or xDy - yDx for some x, y e B. We
know that

o^,{A)(xDx) C [0, oo)   and   (T|,(/1)(xDy -yDx) c zR,

and we must prove

o^w(xDx) C [0, oo)   and   cr^(B)(xDy -yDx) C z'R.

Let S be the restriction of T to B . Now the complexification of the restriction
map is a unital complex algebra homomorphism from the algebra (T, I) gen-

erated by T and / into the algebra (S, /) generated by S and /. Therefore,

o&IB)(S) C oc{SJ)(S) c o{TJ)(T) = a^IA)(T).

This completes the proof.   D

A real C*-algebra is a closed subalgebra of its complexification, which is a

complex C*-algebra in some norm. Thus, a real C*-algebra with the triple
product

{xyz} = \(xy*z + zy*x)

is a closed real subtriple of a 75*-triple. By the preceding remark, a real C*-
algebra is a /*5-triple.

Two important problems left open in this paper are

Problem 1. Is the complexification of a /*5-triple a JB* -triple in some norm
extending the original norm? (This is solved for commutative 7*5-triples in
Theorem 3.11.)

Problem 2. Is the bidual of a 7*5-triple a /*5-triple with a separately weak*-
continuous triple product?

2. Commutative complex triples

In this short section we are going to use Theorem 1.2 to modify the treatment

in [5, §1] by not requiring that xDx be hermitian. Theorem 2.2 will be used
to prove the main result of this paper, namely Theorem 3.11, which leads to a
Gelfand-Naimark Theorem for commutative real 7* i?-triples.

Note that the second spectral condition is not used.
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138 T. C. DANG AND BERNARD RUSSO

Definition 2.1. A Banach Jordan triple is commutative if

(4) {{xyz}uv} = {xy{zuv}} = {x{yzu}v}.

For example, any commutative C*-algebra Co(Q) is a commutative Banach

Jordan triple with fUg(h) - fgh .
From (1) and (4) we have

(5) {xyz}Uu = xD{yzw} = (xUy)(zUu).

By the continuity assumption, there is a constant N such that

(6) ||{xyz}||</V||x||||y||||z||.

Throughout this section U will denote a commutative complex Banach Jor-

dan triple.
Let B = B(U) := the closed span of UDU in Sf(U). Then B is a com-

mutative Banach subalgebra of S?(U). Denote the Gelfand Transform of B

by

BiU)-^CoiX),

where X = XB is the maximal ideal space of B. Let A = A(t7) := the set of
all nonzero triple homomorphisms X: U —► C. Precisely,

A = {X: U -> C: 0 ¿ X linear, Xi{abc}) = k(a)J(E)X(c)}.

According to [5, Lemma 1.6], A c S'ifJ, C) and ||A|| < \fÑ, where N
is defined in (6). Thus A is a weak*-locally compact space and a "principle
T-bundle" (T = unit circle) under the action

Tx A3 it, X)^t-X£ A,

where (/ • A)(x) = tXix). Moreover, there is a bijection

A/T <-► {/ideal cU:U/I=*Cas triples}.

Define a norm closed subtriple of Co (A)

Chom(A) := {/ G Co(A) : f(t. X) = tf(k) V(i, X) £ T x A}

and a Gelfand transform U 3 x^ x- Tuix) £ Ch0m(A) by Tv(x)(X) = X(x).
Thus

U -^ Chom(A)

is a continuous triple homomorphism.

According to [5, Lemma 1.8], U is dense in Chom(A).

Theorem 2.2. Let U be a commutative complex Banach Jordan triple. Suppose

that

(1) ||{xxx}|| = ||x||3;

(2) ||{xyz}||<||x||||y||||z||;
(3) U is positive, i.e., o&(U)(xUx) C [0, oo) for each x £ U.
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REAL BANACH JORDAN TRIPLES 139

Then the Gelfand representation U —► Chom(A) is an isometric surjective triple

isomorphism.

Proof. By Theorem 1.2, U is a 75*-triple, so the result follows from [5].   D

For a generalization of this theorem see [2].

3. Commutative real triples

In this section A will be a commutative real Banach Jordan triple, that is, a
real Banach space A , together with a trilinear map

AxAxA3ix,y,z)>-> {xyz} £ A

which satisfies

(7) {xyz} = {zyx},

(8) {{xyz}uv} = {xy{zuv}} = {x{yzu}v}.

We shall define a natural Gelfand transform and prove a representation the-
orem of Gelfand-Naimark type.

By analogy with the complex case, let B(A) be the Banach subalgebra of

¿?iA) generated by ADA. Then B(A) is a commutative real Banach algebra

(not necessarily unital, cf. [4, p. 63]). Let XB,A, denote the space of complexi-

fied characters (cf. [4, p. 82]); that is,

XbIA) = {t:B(A)-+C, O^t real-linear, x(ST) = t(S)x(T)}.

By analogy we define A^ to be the collection of all nonzero real-linear triple
homomorphisms of A into C ; precisely,

ACA = {X: A -» C: X real linear, X # 0, X({abc}) = X(a)J(b)X(c)}.

By the proof of [5, Lemma 1.6], each such X is automatically continuous and
A^ is contained in a bounded subset of 3*.(A, C). Note that e'eAcA - ACA ,
that A^ is closed under complex conjugation, and that ACA is locally compact

in the topology of pointwise convergence on A.

Of course, we shall occasionally make use of the box operators xDy : a i->

{xya}.

In order to obtain the analogue of Theorem 2.2 we need to consider the

complexification of A.

Let U :- Ac - c/>(A)+i(j)(A) be the complexification of A, and let 4>: A —> U
be the natural embedding. The space U becomes a complex commutative

Jordan triple system in the natural way, and 0 is a real-linear triple isomor-

phism into. Explicitly, U = A x A becomes a complex linear space under
(a + iß)(x, y) = (ax-ßy, ay + ßx), a, ß £R, x,y £ A, and <j)(a) = (a,0)

for a £ A. Also, if x, y, z e U and we write x = xx + ix2 for (xx, x2) and
so on, then

{xyz}u = {xxyxzx}A + {xxy2z2}A + {x2y2zx}A - {x2yiz2}^

+ i({x2yizx}A - {xxy2zx}A + {xiyiz2}^ + {x2y2z2}A).

We will use the given norm on A to define a norm on U so that we can

impose further assumptions on the spectrum of certain operators. We give U
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140 T. C. DANG AND BERNARD RUSSO

a preliminary norm as defined in [4, (9.1)]

||M||2:=-^sup{||A«||,:AGT},

where if « = (x, y) = <f>(x) + i(j>(y) e U,

IMIi = 11*11+ IMI-
Recall that (t/, Il * Hi) is a real Banach space, (U, || • ||2) is a complex Banach

space, r/> is an isometry in each norm, and (l/-\/2)|| • 111 < Il • II2 < Il ' Hi • F01"
T£^f(U) =5?(U, ||-||2) let ||r||^{[/) denote the operator norm

\\T\\^{U) =    sup    (||r«||2/||M||2).
«5¿0,  u€U

Lemma 3.1.   UDU c ^(U) and ||xDy||^(t/) < 23/2||x||2||y||2 for x,y £ U.

Thus U is a commutative complex Banach Jordan triple.

Proof. If a, b £ A and z = zx + iz2 £ U, then

||(flDÔ)z||2 < \\(aDb)z\\x = \\{abzx}\\A + \\{abz2}\\A < ||ay|ftyi*lli

^HûlUflôlUv^llzlb,

so \\anb\\<?(U) < y/2\\a\\A\\b\\A.
In general, (xi + z'x2)D(yi + iy2) = Xj Dyj - x2Dy2 + z'(x2Dyi ) - z'(xi Dy2) now

implies that ||(x. + z'x2)D(yi + zy2)|| < \/2||x. + z'x2||.||y. + zy2||i <

23/2||xi + zx2||2||y.+zy2||2.   D

As in §2, let B(U) be the closed complex subalgebra of f?(U) generated by

UUU and define B(cj)(A)) to be closed real subalgebra of ^(U) generated by
4>(A)n<t>(A).

Lemma 3.2.  B(d>(A)) is a real Banach algebra which is isometrically isomorphic

to B(A).

Proof. The map a: spR/lDvl —» spR</>(v4)D0(,4) defined by £)x,Dy, i->
2^^(x,)D</>(y,) is an isomorphism which is isometric, so it extends to the de-
sired isomorphism. To see this, let X = Y¿ x¡Oyi and u = <j>(a) + i<f>(b) £ U.

Then o(X)u = <f>(Xa) + i<(>(Xb), so ||<t(^)m||i < ||*lb^)||w||i. Since o(X) is
complex linear,

||ff(*)u||2 = -^SUpllAffWuH, = -j=SUp||(TW(Al.)||,
v2  x v2  x

<-= sup ||X|| ||Atf||i = \\X\\ ||M||2.
V2   x

Hence \\o(X)\\y(U) < \\X\\<?lA).
Pick a £ A of norm 1 such that the norm of Xa is close to the norm of X.

Then u = <f>(a) satisfies ||w||2 = 1 and ||er(.Y)u||2 = ||^a|U . showing that a is

isometric and hence well defined. It is trivial that a is a homomorphism.   D

Lemma 3.3. For T, S £ B(cj>(A)) we have

\\T\Wtu)<Si\\T + iS\Wm.
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REAL BANACH JORDAN TRIPLES 141

Proof. For x £ A both T(<f>(x)) and S((f>(x)) belong to <j>(A), so

\\(T+iS)(cf>(x))\\x = |TO(x)) + iS(<Kx))\\x = i™x))||2 + \\S(tp(x))\\2.

Thus \\T(<Kx))\\2 < \\(T + iS)(<j>(x))\\x < V2\\(T+iS)<fi(x)\\2. Hence

\\T\W(U) = \W-l(T)\\#(A) = \\TU(A)\W(m,u) < V2\\T+iS\\<?(ü).   O

Proposition 3.4. Let A be a commutative real Banach Jordan triple. The com-

plex subalgebras B(U) and B(<j>(A)) + iB(cj)(A)) of 2C(U) coincide. Thus B(U)
is the complexification B(tf>(A))c ofB(<f>(A)). Less precisely, B(AC) = (B(A))C.

Proof. It is clear that svcUDU c B(d}(A))+iB(cj)(A)) c B(U). To complete the
proof is suffices to show that B(cj)(A)) + /B(</)(A)) is a closed subset of S?(U),
but this follows immediately from Lemma 3.3.   D

The following lemma is based on some ideas from [8].

Lemma 3.5. Let A be a commutative real Banach Jordan triple.
(a) Suppose that {xxx} = 0 implies x - 0. Then (Y,"xXiDyi)* :— £" y,Dx;

defines an involution on the linear span of ADA (i.e., a linear automorphism of
order 2).

(b) Suppose further that ||{xxx}|| = ||x||3 and

(9) ll{x^}||<WWIkll.
Then the map * defined in (a) extends to an involution on B(A) which makes

B(A) into a real Banach *-algebra satisfying all the axioms of a real C*-algebra
except possibly for the invertibility of I +T*T in the unital extension.

Proof, (a) We first show, as in [8], that * is well defined. For this, suppose that

£"x,Dy, = 0 and let T = YHy&Xi. To show that T = 0, let z £ A and
Uj = {yjXjZ} . Then Tz = YliyiXiz} , and

{Tz, Tz, Tz} =  Y^ {{yiXiZ}, {yjXjz}, {ykxkz}}
i,j,k

=  J2 {{zx'yi)uJuk} = £ {z{XiyiUj}uk}
i.j.k i,j ,k

j,k  I i J        j,k

Then by assumption Tz = 0, so T = 0 and * is well defined. Clearly,

* is linear and of order 2. To prove that (TS)* = T*S*, it suffices by ad-

ditivity to assume that T, S £ ADA.  With T - xDy and S — zDw we
have (TS)* = ((xDy)(zDw))* = (xD{yzu;})* = {yzw}Dx = {wzy}Dx and

S*T* = (wDz)(yDx) = {tozy}Dx, by (5).
(b) We again argue as in [8]. Let S - Y,"x¡Dy¡ and z £ A. Then

||5z||3 = ||{5z,5z,5z}||

¿2{Sz,Sz,{xiyiz}} ^2{Sz, {Sz,Xi, y,}, z}

= ||{5z,5*5z,z}||<||)Sz||||5*1Sz||||z|
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142 T. C. DANG AND BERNARD RUSSO

Therefore, \\S\\2 < \\S*S\\, which implies that * is isometric and extends to a
C*-involution on B .   D

In order to proceed further, we shall need to make some spectral assumptions.

Lemma 3.6. Let A be a commutative real Banach Jordan triple. Suppose that

{xxx} = 0 implies x = 0, and assume the two spectral conditions

(10) o%,(A)(xDx) c [0, oo)   forx£A,

(11) o%>(A)(xDy - yDx) C iR  for x, y, e A.

For each t £ XCB,A, there is X £ ACA such that t(xDy) = X(x)X(y) for x, y £

A. This correspondence establishes a bijection

^)-AyT.
Proof. If X £ ACA , there exist zeR and a £ A such that e"X(a) = 1. Define

x: B(A) -> C by x(T) = eilX(Ta). Then

r(xDy) = (<?'''A)({xya}) = X(x)X(y).

Note that t does not depend on the choices of t and a.

We next prove that x(TS) = x(T)x(S) for all T,S £ B(A). By continuity

and linearity, it suffices to prove this for T, S £ ADA. With T = xDy and
S = zDw we have TS = xD{yzit;} and

r(TS) = X(x)X({yzw}) = X(x)Xl^)X(z)X(w) = x(T)xiS).

Thus t £ XCB{A), and it is clear that e'eX and X give rise to the same t . This

gives a map X >-> x from A^/T to XCB(A).

Now let t £ XCB,A,. By the nonunital version of [4, 10.4],

t(xDx) £ ocB(A)ixDx) = oB(A)c(xDx) D Oj?{A)c(xDx) = o%,(A)(xDx).

However, by (10), equality holds, and therefore, for all x £ A, t(xDx) > 0.

We claim that there exists an a £ A such that x(aDa) = 1, for otherwise

we would have t(xDx) = 0 for all x £ A and thus t((x + y)D(x + y)) = 0,

implying

(12) t(xDy + yDx) = 0   for all x, y £ A.

From Lemma 3.5 and (12) it follows that x(T*) = -x(T) for all T £ B(A) and
hence that x(T2) = (x(T))2 = (x(T*))2 = x((T2)*) = -x(T2). Thus x(T) = 0

identically on B(A), a contradiction. Thus such an a exists.

Now define a linear functional X by X(x) = t(xDa) for x £ A. We shall

show that X £ ACA and X(Ta) = x(T) for all T £ B(A), thereby demonstrating

the surjectivity of the map X i-> x.

The second statement follows from (5); with T — xDy, we have

X(Ta) = x(TaDa) = r(xDyaDa = x(T)).

To prove the first statement we first prove

(13) r(xDy) = r(yDx)   for x, y £ A,
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for then, if a, b, c, £ A,

X{abc} = x({abc}Da) = x((aDb)(cDa))

= T((<zDè)(aDa(cDa)) = x((aDa)(aDb)(cDa))

= T(aDa)T((¿>Da)*)T(cDa) = X(a)X(b)X(c),

i.e., X £ A.
It remains to prove (13). Since xDy + yDx = (x + y)D(x + y)-xDx-yDy,

we have r(xDy) + r(yDx) is real. Since (xDy)(yDx) = (xDx)(yDy), we have

t(xDy)r(yDx) > 0. From these two relations, (13) follows in case r(xDy) is

not a real number. On the other hand, if r(xDy) is a real number, then so is

r(yDx) and the difference r(xDy) - r(yDx) is both real and purely imaginary
by (11). This proves (13).   D

In Proposition 3.7, under additional assumptions, B(A) will be shown to be
a real C* -algebra.

Proposition 3.7. Suppose that A is a commutative J*B-triple. Then B(A),

with the norm of ¿(A), is a commutative real C*-algebra with involution de-

termined by (xDy)* = yDx. Consequently, B(U) is a C*-algebra in some
norm extending the norm on B(A) (by [4, 12.4]).

Proof. By Lemma 3.5 all the properties of a real C*-algebra are satisfied except
possibly the invertibility of elements of the form l + T*T in the unital extension

B(A) + RIdA of B(A). For T = S+XIdA it suffices to show that ocB(A)(T*T) >

0, which in turn will follow from the fact that x(T*T) > 0 for all x £ XCB(A).

By Lemma 3.6, t(5") = xJS) for all S £ B(A), and the same holds for T £
B(A) + RIdA . Thus x(T*T) = \x(T)\2 > 0.   D

The following lemma will be used in the proof of Theorem 3.11 only.

Lemma 3.8. Denote the norm in the C*-algebra B(U) by \\ • ||c*. For any
selfadjoint G in B(U) we have

l|G|b(t/)<4v^||G||c..
Proof. Let G = T + iS with T, S £ B(A). By [4, 12.2(a)],

\\T\\<\\T*T + S*S\\X!2

and similarly for ||£||. Thus \\G\\<?{U) < \\T\\BlA)+\\S\\BlA) < 2||r*r+5*S||^t;).

On the other hand, G2 = G*G = (T*T + S*S) + i(T*S - S*T) implies (by

Lemma 3.3) \\T*T+ S*S\\<?{U) < y/2\\G*G\\^{U). Thus \\G\\%(U) < 4V/2||C'C||

= 4V/2||C72||. With ß = 4^2, induction shows that \\G\\%,(U) < ß2"-x\\G2"\\.

Finally, \\G\\j?tU) = (UGH2")1/2" < (^2"-1)I/2"||C72"||1/2", and therefore ||G|| <

ßlim\\G2"\\x/2" = ß\\G\\.   D

Let A(U) be defined as in §2.

Lemma 3.9. With the above notation,

(i) For each X £ A(U) there is X' £ ACA such that X(<f)(x) + i(f>(y)) =
X'(x) + iX'(y) for x, y £ A . This correspondence establishes a bijection

A(U)~AA.
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144 T. C. DANG AND BERNARD RUSSO

(ii) For each x £ XB(V) there is x' e XCB,A, such that x(T + iS) = x'(T) +

ix'(S) for T, S £ B(A). This correspondence establishes a bijection

Xbcv) *-* XCB(A) ■

Proof. The second part is precisely the statement of the nonunital version of

[4, (10.6)], and the first part is proved in exactly the same way.   D

Lemma 3.10. For each x £ XBiu) there is X £ A(U) such that x(uDv) =

X(u)X(v) for u,v £ U. This correspondence establishes a bijection XBiu) <-+

A(C/)/T.

Proof. Lemmas 3.9 and 3.6.   D

We can now state and prove the main result of this paper.

Theorem 3.11. Let A be a commutative J*B-triple. There is a norm on the

complexification U of A extending the norm on A and for which U is a JB*-

triple.

Proof. First we note that the norm condition ||{xxx}|| = ||x||3 and (9) imply

that, for x £ A , \\x\\2 = ||xDx||. By Proposition 3.7 and Lemma 3.6,

||x||2 = sup{|T(xDx)| : x £ XCB(A)} = sup{|A(x)|2 ; X £ AA}.

Define a function || • ||3 on U by ||u||3 = sup{|A(«)| : X £ A(U)}. Note

that \\u\\j = sup,€XBm x(uDu) = ||mDw||c. . By Lemma 3.9(i), ||0(a)||3 = \\a\\A

if a £ A. It is obvious that || • 113 is a seminorm satisfying properties (1)

and (2) of Theorem 2.2. Suppose that ||«||3 = 0. Then x(uDu) = 0 for all
x £ XBiu), so uDu = 0. Writing u = x + iy with x, y £ <f>(A), we have
0 = xDx + yDy + z'(yDx - xDy), which implies xDx + yDy = 0, and hence
x = y = 0 (since B(A) is a real C*-algebra). Thus we have a norm, and we

next prove that (3) of Theorem 2.2 is satisfied. For this it suffices to show that

aB<u)(uDu) > 0. Since B(U) is a C*-algebra, aB(u)(uDu) = {t(wDm) : x £

XB(u)} , and by Lemma 3.10 this is > 0.
It remains to show that U is complete in the norm || • ||3. This will follow

from the following: if u = x + iy with x, y € A, then ||x||3 < 2\/2||w||3.
To prove this, write uDu = (xDx -I- yDy) + z'(yDx - xDy), which implies

(by Lemmas 3.3 and 3.8) ||xDx + yDy||^(f7) < y/2\\uau\\<?{U) < 8||mDm||c. .
Since xDx and yDy belong to the real ¿""-algebra B(A), ||xDx||B(¿) <

||xDx + yDy||ß(y4) < 8||«Dm||c« . Thus

||x||i = ||x||2 = ||xDx||BM) < 8||mDm||c. = 8||M||2,

completing the proof.   D

We conclude by describing the Gelfand transform and proving a Gelfand-

Naimark type theorem for commutative 7*5-triples.
As noted earlier, the space A^ is a locally compact Hausdorff space in the

topology of pointwise convergence on A. The bijection in Lemma 3.9(i) is a

homeomorphism. Now let

C;om(AA) = {f£Co(AcA):f(eieX') = eief(X')   and   /(I7) = 7(Ä7)},
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and define a Gelfand transform r*: A -» C;om(AA) by T^(x)(X') = X'(x). Let
p : Av -+ ACA be the restriction map used in Lemma 3.9, and let p* : Qom(A^) -►

Cbom(Au) be its transpose.

Note that p~x(X)(<f>(x) + i<p(y)) - A(x) + iXiy), and therefore T^ maps A

intoCh*om(A^).
Since

rr5o^ = /,*or5,
T* is an isometry.

Finally, if / € C£om(A^) and x, y £ A axe such that

p*f = Tuicj>ix) + im),

the fact that /(Ä7) = 7W) implies that y = 0 ; hence T*(A) = C*om(A^). This
proves

Theorem 3.12. Let A be a commutative J*B-triple. Then the Gelfand transform

is an isometric triple isomorphism of A onto Qom(A^,).
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