A LARGE Π_2^1 SET, ABSOLUTE FOR SET FORCINGS

SY D. FRIEDMAN

(Communicated by Andreas R. Blass)

Abstract. We show how to obtain, by class-forcing over L, a set of reals X which is large in $L(X)$ and has a Π_2^1 definition valid in all set-generic extensions of $L(X)$. As a consequence we show that it is consistent for the Perfect Set Property to hold for Σ_2^1 sets yet fail for some Π_2^1 set. Also it is consistent for the perfect set property to hold for Σ_2^1 sets and for there to be a long Π_2^1 well-ordering. These applications (necessarily) assume the consistency of an inaccessible cardinal.

The purpose of this note is to prove the following.

Theorem. Let κ be an L-cardinal, definable in L. Then there is a set of reals X, class-generic over L, such that

(a) $L(X) \models \text{Card} = \text{Card}^L$ and X has cardinality κ.
(b) Some fixed Π_2^1 formula defines X in all set-generic extensions of $L(X)$.

By Lévy-Shoenfield Absoluteness, any Π_2^1 formula defining X in $L(X)$ defines a superset of X in each extension of $L(X)$. The point of (b) is that this superset is just X in set-generic extensions of $L(X)$. If $\mathcal{O}^\#$ exists then X as in the Theorem actually exists in V, though of course it will be only countable there.

The basic idea of the proof comes from David [2]. In his paper a real R class-generic over L is produced so that $\{R\}$ is Π_2^1, uniformly for set-generic extensions of $L(R)$. The added technique here is to use “diagonal supports” to take a large product of David-style forcings.

The following corollaries are further applications of the Theorem and its proof.

Corollary 1. Assume consistency of an inaccessible cardinal. Then it is consistent for the Perfect Set Property to hold for Σ_2^1 sets yet fail for some Π_2^1 set.

Proof. Use the Theorem to obtain a Π_2^1 set X which has cardinality κ in $L(X)$, κ least L-inaccessible, and which has a Π_2^1-definition uniform for set-generic extensions. Then gently collapse κ to ω_1 and add ω_2 Cohen reals. In this extension, $\omega_1 > \omega_1^{L(R)}$ for each real R and X is a Π_2^1 set of cardinality $\omega_1 < \omega_2 = 2^{\aleph_0}$. \Box

Received by the editors December 8, 1992.
1991 Mathematics Subject Classification. Primary 03E15, 03E35, 04A15.
Research supported by NSF contract #9205530-DMA.
Corollary 2. Assume consistency of an inaccessible. Then it is consistent that the Perfect Set Property holds for Σ^1_3 sets and there is a Π^1_2 well-ordering of some set of reals of length \aleph_{1000}.

The latter answers a question of Harrington [4].

The proof

We modify the construction of David [2] to suit our purposes. First we describe the α^+-Souslin tree T_α in L, where α is a successor L-cardinal: T_α has a unique node on level 0 and exactly two immediate successors on level $\beta + 1$ to each node on level β, for $\beta < \alpha^+$. If $\beta < \alpha^+$ is a limit of cofinality $< \alpha$ then level β assigns a top to each branch through the tree below level β. Now suppose $\beta < \alpha^+$ has cofinality α. Let \mathcal{P} be the forcing consisting of pairs (γ, f) where $\gamma < \beta$ and f is a function from γ into the nodes at levels β, with extension defined by $(\gamma', f') \leq (\gamma, f)$ iff $\gamma' \geq \gamma$, $f'\delta$-tree-extends $f:\delta$ for each $\delta < \gamma$. Choose G to be \mathcal{P}-generic over L_β, where $\beta^* = \text{largest p.r. closed } \beta^* > \beta$ such that $\beta^* = \beta$ or L_{β^*} has cardinality greater than α. Then the nodes on level β are obtained by putting tops on the branches defined by $\{f(\delta)\} = G$ some γ for $\delta < \beta$. This completes the definition of the α^+-Souslin tree T_α.

Now fix an L-definable cardinal κ and also fix an L-definable 1-1 function $F : \kappa \times \omega \times \text{ORD} \rightarrow \text{Successor } L$-cardinals greater than κ. The forcing $\mathcal{P}(\gamma, n)$, $\gamma < \kappa$ and $n < \omega$, is designed to produce a real $R(\gamma, n)$ coding branches through T_α whenever α is of the form $F(\gamma, n, \delta)$ for some δ. This forcing is obtained by modifying the Jensen coding of the empty class (see Beller, Jensen, and Welch [1]) as follows: In defining the strings $s : [\alpha, \omega] \rightarrow 2$ in S_α, require that $\text{Even}(s)$ code a branch through T_α if $\alpha \in \text{Card}(\gamma, n) = \{F(\gamma, n, \delta)\} \delta \in \text{ORD}$). Also use David's trick to create a Π^1_2 condition implying that branches through the appropriate trees are coded: for any α, for s to belong to S_α require that for $\xi \leq |s|$ and $\eta > \xi$, if $L_\eta(s \upharpoonright \xi) \equiv \xi = \alpha^+ + ZF^+ + \text{Card} = \text{Card}^\xi$ then $L_\eta(s \upharpoonright \xi) \equiv s$ for some $\gamma^* < \kappa^*$, $\text{Even}(s \upharpoonright \xi)$ codes a branch through T_{γ^*} whenever $\alpha^* \in \text{Card}^\xi(\gamma^*, n)$, where κ^*, T_{α^*}, $\text{Card}^\xi(\gamma^*, n)$ are defined in L_η as were κ, T_α, $\text{Card}(\gamma, n)$ in L. The $\leq \alpha$-distributivity of $\mathcal{P}(\gamma, n)$ is established in David [2], with one added observation: if $\alpha' \in \text{Card}(\gamma, n)$ then we have to be sure that $\text{Even}(p_{\alpha'})$ codes a branch through $T_{\alpha'}$, where p arises as the greatest lower bound to an α-sequence constructed to meet α-many open dense sets. There is no problem if $\alpha' > \alpha$ since then $T_{\alpha'}$ is $\leq \alpha$-closed. If $\alpha' = \alpha$ then the property follows from the definition of level $|p_{\alpha}|$ of T_α, since we can arrange that $\text{Even}(p_{\alpha})$ is sufficiently generic for $T_\alpha \upharpoonright (\text{levels } < |p_{\alpha}|)$. (In fact the latter genericity is a consequence of the usual construction of the α-sequence leading to p.)

The forcing $\mathcal{P}(\gamma)$, $\gamma < \kappa$, is designed to produce a real $R(\gamma)$ such that $n \in R(\gamma)$ iff $R(\gamma)$ codes a branch through T_α for each α in $\text{Card}(\gamma, n)$. A condition is $p \in \prod_n \mathcal{P}(\gamma, n)$ where $p(n)(0)$ (a finite object) is $(\varnothing, \varnothing)$ for all but finitely many n. Extension is defined by $q \leq p$ iff $q(n) \leq p(n)$ in $\mathcal{P}(\gamma, n)$ unless n is not of the form $2^n 3^{n_1}$ or $n = 2^n 3^{n_1}$ where $q(n_0)q(n_1) = 0$, in which case there is no requirement on $q(n)$. A generic G can be identified with the real $\{2^n 3^m | p(n)_0(m) = 1 \text{ for some } p \in G\} = R(\gamma)$. The forcing at or above
Our desired forcing \mathcal{P} is the "diagonally supported" product of the $\mathcal{P}(\gamma)$, $\gamma < \kappa$. Specifically, a condition is $p \in \prod_{\gamma < \kappa} \mathcal{P}(\gamma)$ where for infinite cardinals $\alpha < \kappa$, $\{\gamma \mid p(\gamma)(\alpha) \neq (\emptyset, \emptyset)\}$ has cardinality $\leq \alpha$ and in addition $\{\gamma \mid p(\gamma)(0) \neq (\emptyset, \emptyset)\}$ is finite. Quasi-distributivity for $\mathcal{P}_\alpha =$ forcing at or above α follows just as for $\mathcal{P}(\gamma)$. The point of the diagonal supports is that for infinite successor cardinals α, \mathcal{P} factors as $\mathcal{P} \times \mathcal{P}_\alpha$ where \mathcal{P}_α denotes the \mathcal{P}_α-generic and \mathcal{P}_α is $\alpha^+ - \text{CC}$. Thus we get cardinal-preservation.

Now note that if $\langle R(\gamma) \mid \gamma < \kappa \rangle$ comes from (and therefore determines) a \mathcal{P}-generic then $n \in R(\gamma) \rightarrow R(\gamma)$ codes a branch through T_α for $\alpha \in \text{Card}(\gamma, n)$. Conversely, if $n \notin R(\gamma)$ then there is no condition on extension of conditions in $\mathcal{P}(\gamma)$ to cause $R(\gamma)$ to code a branch through such T_α. In fact, by the quasi-distributivity argument for \mathcal{P}_α, given any term τ for a subset of α^+ and any condition p, we can find $\beta < \alpha^+$ of cofinality α and $q \leq p$ such that q forces $\tau \land \beta$ to be one of α-many possibilities, each constructed before β^*, where $\beta = |q_\alpha|$. Thus q forces that τ is not a branch through T_α, so we get: $n \in R(\gamma)$ iff $R(\gamma)$ codes a branch through each T_α, $\alpha \in \text{Card}(\gamma, n)$, iff $R(\gamma)$ codes a branch through some T_α, $\alpha \in \text{Card}(\gamma, n)$. The coding is localized in the sense that if $n \in R(\gamma)$ then whenever $L_\eta(R(\gamma)) \models ZF^- + \text{Card} = \text{Card}^\kappa$, there is $\gamma^* < \kappa^*$ such that $L_\eta(R(\gamma)) \models R(\gamma)$ codes a branch through T_{γ^*} whenever $\alpha^* \in \text{Card}^*(\gamma^*, n)$, where κ^*, T_{α^*}, $\text{Card}^*(\gamma^*, n)$ are defined in L_η just as κ, T_α, $\text{Card}(\gamma^*, n)$ are defined in L. The latter condition on $R(\gamma)$ is sufficient to know that $R(\gamma)$ is equal to one of the intended $R(\gamma)$, $\gamma < \kappa$, even if we restrict ourselves to countable η. With that restriction we get a Π_1^1 condition equivalent to membership in $X = \{R(\gamma) \mid \gamma < \kappa\}$. Since set-forcing preserves the Souslinness of trees at sufficiently large cardinals, the above Π_1^1 definition of X works in any set-generic extension of $L(X)$. This completes the proof of the Theorem.

Proof of Corollary 2. As in the proof of Corollary 1 we can obtain $X = \{R(\gamma) \mid \gamma < \kappa\}$, $\kappa = 999$th cardinal after the least L-inaccessible, which has a Π_1^1 definition uniform for set-generic extensions of $L(X)$, where $\text{Card}^{L(X)} = \text{Card}^\kappa$. We can guarantee that $Y = \{\langle R(0), R(\gamma_1), R(\gamma_2) \rangle \mid 0 < \gamma_1 \leq \gamma_2 < \kappa\}$ also has such a uniform Π_1^1 definition, using the following trick: Design $R(0)$ so that $u \in R(0) \Leftrightarrow \text{Even}(R(0))$ codes a branch through T_α for each α in $\text{Card}(0, n)$, and so that $\text{Odd}(R_0)$ almost disjointly codes $\{\langle R(\gamma_1), R(\gamma_2) \rangle \mid 0 < \gamma_1 \leq \gamma_2 < \kappa\}$. Thus, for $R \in L(X)$, R^* is almost disjoint from $\text{Odd}(R_0)$ iff $R = \langle R(\gamma_1), R(\gamma_2) \rangle$ for some $0 < \gamma_1 \leq \gamma_2 < \kappa$, where $R^* = \{n \mid n \text{ codes a finite initial segment of } R\}$. The former requires only a very small modification to the definition of the $\mathcal{P}(0)$ forcings. The latter requires only a small modification to the definition of \mathcal{P}: take the diagonally-supported product as before, but restrain $p(0)$ for $p \in \mathcal{P}$ so as to affect the desired almost disjoint coding. These finite restraints do not interfere with the quasi-distributivity argument for \mathcal{P}.

Now we have the desired Π_1^1 definition for $Y = \{\langle R(0), R(\gamma_1), R(\gamma_2) \rangle \mid 0 < \gamma_1 \leq \gamma_2 < \kappa\}$: R belongs to Y iff $R = \langle R_0, R_1, R_2 \rangle$ where $R_0 = R(0)$ and $\langle R_1, R_2 \rangle^*$ is almost disjoint from R_0 and R_1, R_2 belong to X. Since $R(0)$
is uniformly definable as a Π^1_2-singleton in set-generic extensions of $L(X)$, this is the desired definition. Of course, using Y we obtain a Π^1_2 well-ordering of length κ. Finally, as in the proof of Corollary 1, gently collapse κ to ω_1 and we have $\omega_1 > \omega^L_1(R)$ for each real R with a Π^1_2 well-ordering of length \aleph_{1000}.

Remarks. The same proof gives length \aleph_α for any L-definable α. We can also add Cohen reals so that the continuum is as large as desired, without changing the maximum length of a Π^1_2 well-ordering.

It is possible to show that if O^* exists then there is a Π^1_2 set X such that X has large cardinality in $L(X)$. But this requires the more difficult technique of Friedman [3].

REFERENCES

3. S. Friedman, The Π^1_2-singleton conjecture, J. Amer. Math. Soc. 3 (1990), 771–791.