On the absolutes of compact spaces with a minimally acting group

Author:
Ingo Bandlow

Journal:
Proc. Amer. Math. Soc. **122** (1994), 261-264

MSC:
Primary 22A05; Secondary 54D80, 54H11

DOI:
https://doi.org/10.1090/S0002-9939-1994-1246512-X

MathSciNet review:
1246512

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If an -bounded group *G* acts continuously on a compact Hausdorff space *X* and the orbit of every point is dense in *X*, then *X* is coabsolute to a Cantor cube.

**[1]**A. V. Arkhangel′skiĭ,*Classes of topological groups*, Uspekhi Mat. Nauk**36**(1981), no. 3(219), 127–146, 255 (Russian). MR**622722****[2]**Bohuslav Balcar and Alexander Błaszczyk,*On minimal dynamical systems on Boolean algebras*, Comment. Math. Univ. Carolin.**31**(1990), no. 1, 7–11. MR**1056164****[3]**Ingo Bandlow,*A construction in set-theoretic topology by means of elementary substructures*, Z. Math. Logik Grundlag. Math.**37**(1991), no. 5, 467–480. MR**1270189**, https://doi.org/10.1002/malq.19910372607**[4]**Ingo Bandlow,*On the absoluteness of openly-generated and Dugundji spaces*, Acta Univ. Carolin. Math. Phys.**33**(1992), no. 2, 15–26. MR**1287220****[5]**James E. Baumgartner,*Applications of the proper forcing axiom*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR**776640****[6]**Alan Dow,*An introduction to applications of elementary submodels to topology*, Topology Proc.**13**(1988), no. 1, 17–72. MR**1031969****[7]**B. A. Efimov,*Dyadic bicompacta*, Trudy Moskov. Mat. Obšč.**14**(1965), 211–247 (Russian). MR**0202105****[8]**Richard Haydon,*On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim)*, Studia Math.**52**(1974), 23–31. MR**0418025**, https://doi.org/10.4064/sm-52-1-23-31**[9]**B. A. Pasynkov,*The dimension and geometry of mappings*, Dokl. Akad. Nauk SSSR**221**(1975), no. 3, 543–546 (Russian). MR**0377834****[10]**A. Pełczyński,*Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions*, Dissertationes Math. Rozprawy Mat.**58**(1968), 92. MR**0227751****[11]**E. V. Ščepin,*Topology of limit spaces with uncountable inverse spectra*, Uspehi Mat. Nauk**31**(1976), no. 5 (191), 191–226 (Russian). MR**0464137****[12]**L. B. Šapiro,*The absolutes of topological spaces and of continuous mappings*, Dokl. Akad. Nauk SSSR**226**(1976), no. 3, 523–526 (Russian). MR**0405377****[13]**L. B. Shapiro,*On spaces that are coabsolute with dyadic compacta*, Dokl. Akad. Nauk SSSR**293**(1987), no. 5, 1077–1081 (Russian). MR**890202****[14]**V. V. Uspenskiĭ,*Why compact groups are dyadic*, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 601–610. MR**952642**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
22A05,
54D80,
54H11

Retrieve articles in all journals with MSC: 22A05, 54D80, 54H11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1246512-X

Keywords:
Coabsolute spaces,
Dugundji space,
-bounded group

Article copyright:
© Copyright 1994
American Mathematical Society