i-CONVEXITY OF MANIFOLDS WITH REAL PROJECTIVE STRUCTURES

SUHYOUNG CHOI

(Communicated by Christopher Croke)

Abstract. We compare the notion of higher-dimensional convexity, as defined by Carrière, for real projective manifolds with the existence of hemispheres. We show that if an i-convex real projective manifold M of dimension n for an integer i with $0 < i < n$ has an i-dimensional hemisphere, then M is projectively homeomorphic to S^n/Γ where Γ is a finite subgroup of $O(n + 1, \mathbb{R})$ acting freely on S^n.

A real projective structure (RPn-structure) on a smooth manifold of dimension n, $n > 0$, is given by an atlas of charts to the sphere S^n where transition functions of the charts are restrictions of projective automorphisms of S^n. An RPn-manifold is a manifold with an RPn-structure, and a projective map is an immersion-preserving real projective structures locally. The Klein model of hyperbolic geometry implies that n-dimensional hyperbolic manifolds provide examples of RPn-manifolds. (See [2] and [3].)

Throughout this paper, let M be an RPn-manifold; let \widetilde{M} denote the universal cover of M with the induced RPn-structure. M has a developing map $\text{dev}: \widetilde{M} \to S^n$, a projective map. The sphere S^n has a standard Riemannian metric μ of curvature 1 and the associated distance metric d. Note that dev induces a Riemannian metric μ on \widetilde{M} from S^n. Associated with μ is the induced distance metric d on \widetilde{M}. The completion \hat{M} of \widetilde{M} is obtained by completing d. Let σ be the frontier set $\hat{M} - \widetilde{M}$. The sets \hat{M} and σ are topologically independent of the choice of dev, and dev extends uniquely to a distance decreasing map on \hat{M}. The extended map is also called a developing map and is denoted by the same symbol dev.

Let i be an integer such that $0 < i \leq n$ holds. A great i-sphere is a totally geodesic i-dimensional sphere imbedded in S^n; a subset of \hat{M} for which the restriction of dev is an imbedding onto a great i-sphere in S^n is also called a great i-sphere. A great i-ball is a hemisphere of a great i-sphere in S^n; a
subset of \(\tilde{M} \) for which the restriction of \(\text{dev} \) is an imbedding onto a great \(i \)-ball is also called a great \(i \)-ball. An \(n \)-dimensional open hemisphere of \(S^n \) has a natural affine structure. An \(i \)-simplex is the convex hull of \(i + 1 \) independent points in the hemisphere (under affine geometry). An \(i \)-simplex in \(\tilde{M} \) is a subset for which the restriction of \(\text{dev} \) is an imbedding onto an \(i \)-simplex in an \(n \)-dimensional open hemisphere of \(S^n \).

We introduce the definition given by Carrière [1]. We say that \(M \) is \(i \)-convex for an integer \(i \) with \(0 < i < n \) if the following holds: Given an \((i+1)\)-simplex \(T \) in \(\tilde{M} \), if \(F_1 \) is a face of \(T \) such that \(T \cap \sigma = F_1 \cap \sigma \), then \(T \subset \tilde{M} \). (Note that the \(i \)-convexity of \(M \) implies the \(j \)-convexity of \(M \) where \(i \leq j < n \)).

A subset \(A \) of \(\tilde{M} \) is called \textit{convex} if every two points of \(A \) are connected by an imbedded arc \(\alpha \) such that \(\text{dev}\alpha \) is an imbedding onto a segment of \(\text{d-length} \leq \pi \) (see [2, §1] for more detail). It is easy to see that given a convex open subset \(A \) of \(\tilde{M} \), the map \(\text{dev}|A \) is isometric with respect to the metrics on \(\tilde{M} \) and \(S^n \). Thus, \(\text{dev}|\text{Cl}(A) \) is an imbedding onto \(\text{Cl}(\text{dev}(A)) \) where \(\text{Cl}(A) \) is the closure of \(A \) in \(\tilde{M} \).

We prove the following theorem in this paper.

Theorem. Suppose that \(M \) is \(i \)-convex where \(0 < i < n \) holds. Suppose that \(\tilde{M} \) includes a great \(j \)-ball or a great \(j \)-sphere for \(i \leq j < n \). Then \(\tilde{M} \) is projectively homeomorphic to \(S^n \).

The conclusion implies that \(M \) is projectively homeomorphic to \(S^n/\Gamma' \) where \(\Gamma' \) is a subgroup of the projective automorphism group \(\text{Aut}(S^n) \) acting freely and properly discontinuously on \(S^n \). It is a standard fact that \(\Gamma' \) is conjugate to a finite subgroup of \(O(n+1, \mathbb{R}) \), the group of isometries of \(S^n \). Thus, \(M \) is projectively homeomorphic to \(S^n/\Gamma \) where \(\Gamma \) is a finite subgroup of \(O(n+1, \mathbb{R}) \) acting freely on \(S^n \).

Proof of the Theorem. We give the proof of the theorem assuming that Lemma 1, which follows, holds. We can prove the theorem by using induction on \(j \). Suppose that \(j = n - 1 \). Then by Lemma 1 \(\tilde{M} \) includes a great sphere of dimension \(n \). Therefore, \(\tilde{M} \) is projectively homeomorphic to \(S^n \).

Suppose that the conclusion is true for the case where \(j = k \geq i \) holds. We verify the conclusion for the case where \(j = k - 1 > i \) holds. By Lemma 1, \(\tilde{M} \) includes a great \(k \)-sphere. By the induction hypothesis, \(\tilde{M} \) is projectively homeomorphic to \(S^n \). This completes the proof.

Let us discuss Lemma 1. For an integer \(j \) with \(0 < j < n \), a \((j+1)\)-bihedron in \(S^n \) is a closed domain in a great \((j+1)\)-sphere \(S^{j+1} \) in \(S^n \) bounded by two great \(j \)-balls with common boundary equal to a great \((j - 1)\)-sphere or the set of two points antipodal to each other; a \((j+1)\)-bihedron in \(M \) is a subset for which the restriction of \(\text{dev} \) is an imbedding onto a \((j+1)\)-bihedron in \(S^n \). The bounding great \(j \)-balls of a bihedron are called \textit{faces}. A bihedron in \(S^n \) or \(\tilde{M} \) is convex if and only if the interior angle between two faces of the bihedron is less than or equal to \(\pi \).

Lemma 1. Assume that \(M \) is \(i \)-convex for an integer \(i \) with \(0 < i < n \). Suppose that \(\tilde{M} \) includes a great \(j \)-ball \(B_0 \) where \(i \leq j < n \). Then \(\tilde{M} \) includes a great \((j+1)\)-sphere.
Proof. We choose a convex \((j+1)\)-bihedron \(T_0\) including \(B_0\) in a neighborhood of \(B_0\) with faces \(B_a\) and \(B_b\) such that \(\delta B_a = \delta B_b = \delta B_0\) holds. (Assume that \(B_0\) is not a face of \(T_0\).) Let us agree that bihedra in this proof are \((j+1)\)-dimensional always. Let \(A^+\) be the set of convex bihedra with a face \(B_0\) and including \(B_a\), and let \(A^-\) be the set of convex bihedra with a face \(B_0\) and including \(B_b\). Then there is a unique great \((j+1)\)-sphere \(S^{j+1}\) in \(S^n\) including the images of elements of \(A^+\) and \(A^-\) under \(\text{dev}\).

We may parameterize \(A^+\) and \(A^-\) by positive intervals. Given an element \(T\) of \(A^+\) or \(A^-\), let \(\theta(T)\) be the interior angle between \(B_0\) and the other face of \(T\). This defines a function \(\theta\) from the set of elements of \(A^+\) and \(A^-\) to \(\mathbb{R}\). Let \(T_a\) be the bihedron in \(T_0\) bounded by \(B_0\) and \(B_a\); let \(T_b\) be the bihedron in \(T_0\) bounded by \(B_0\) and \(B_b\). Suppose that \(T'\) and \(T''\) are two bihedra in \(A^+\) with \(\theta(T') = \theta(T'')\). Then Lemma 2 implies that \(T' = T''\). Thus \(\theta|A^+\) is an injective map into \([\theta(T_a), \pi]\). Similarly, \(\theta|A^-\) is an injective map into \([\theta(T_b), \pi]\).

If we have \(t < t'\) where \(t' \in \theta(A^+\) and \(t \in [\theta(T_a), \pi]\) hold, then \(t\) is realized as the angle of a bihedron in \(A^+\) which is included in the bihedron corresponding to \(t'\). It follows that \(\theta(A^+)\) is connected. Similarly, \(\theta(A^-)\) is connected.

Let \(T \in A^+\). Then \(\text{dev}|T\) is an imbedding onto a convex bihedron \(\text{dev}(T)\). Choose an open neighborhood \(N\) of \(T\) in \(M\) such that \(\text{dev}|N\) is an imbedding onto an open subset of \(S^n\). Then for every convex bihedron \(T'\) in \(\text{dev}(N)\) the open subset \(N\) includes a convex bihedron \(T''\) such that \(\text{dev}(T'') = T'\). This implies that \([\theta(T_a), \pi]\) includes an open neighborhood of \(\theta(T)\) whose elements are realized by bihedra in \(A^+\). Hence, \(\theta(A^+)\) is an open subset of \([\theta(T_a), \pi]\). Similarly, \(\theta(A^-)\) is an open subset of \([\theta(T_b), \pi]\).

We claim that \(\theta(A^+)\) is closed. (We use \(i\)-convexity now.) Suppose that it is not closed. Then \(\theta(A^+)\) is the half-open interval \([\theta(T_a), t^+\) for a real number \(t^+\) less than or equal to \(\pi\). Let \(T_i = \bigcup_{T \in A^+} T_i\). Since by Lemma 2, \(\text{dev}|T_i\) is injective, \(\text{dev}|T_i\) is an imbedding onto the interior of a convex bihedron of angle \(t^+\). For the closure \(\text{Cl}(T_1)\) of \(T_1\) in \(\overline{M}\), the map \(\text{dev}|\text{Cl}(T_1)\) is an imbedding onto \(\text{Cl}(\text{dev}(T_1))\). Since \(\text{Cl}(\text{dev}(T_1))\) is a convex bihedron, so is \(\text{Cl}(T_1)\). The bihedron \(\text{Cl}(T_1)\) has two faces \(B_0\) and \(B_{\text{Cl}(T_1)}\) where \(\sigma \cap \text{Cl}(T_1) \subset B_{\text{Cl}(T_1)}^\circ\). Since \(\sigma \cap B_{\text{Cl}(T_1)}^\circ\) is compact, \(\sigma \cap B_{\text{Cl}(T_1)}^\circ\) is a bounded subset of the open great ball \(B_{\text{Cl}(T_1)}^\circ\). Thus, the bihedron \(\text{Cl}(T_1)\) includes a \((j+1)\)-simplex \(K\) such that \(\sigma \cap \text{Cl}(T_1) \subset K^\circ\), where \(K^\circ\) is a \(j\)-dimensional face of \(K\) and is included in \(B_{\text{Cl}(T_1)}^\circ\). The definition of \(i\)-convexity implies that \(K \cap \sigma = \emptyset\) and \(\text{Cl}(T_1) \subset \overline{M}\) hold. Since \(\text{Cl}(T_1) \supset T_a\), we have \(\text{Cl}(T_1) \in A^+\) and hence \(t^+ \in \theta(A^+)\). This is absurd. Therefore, \(\theta(A^+)\) and, similarly, \(\theta(A^-)\) are closed.

We therefore have \(\theta(A^+) = [\theta(T_a), \pi]\) and \(\theta(A^-) = [\theta(T_b), \pi]\). Let \(T^+\) be the convex bihedron corresponding to \(\pi\) belonging to \(A^+\), and let \(T^-\) be that belonging to \(A^-\). We have \(T^+, T^- \subset \overline{M}\). The maps \(\text{dev}|T^+\) and \(\text{dev}|T^-\) are imbeddings onto great \((j+1)\)-balls in the great \((j+1)\)-sphere \(S^{j+1}\). Since the intersection \(\text{dev}(T^+) \cap \text{dev}(T^-)\) is a great \(j\)-sphere and, hence, is path-connected, Lemma 2 implies that \(\text{dev}|T^+ \cup T^-\) is an imbedding onto \(S^{j+1}\). Therefore, \(T^+ \cup T^-\) is a great \((j+1)\)-sphere in \(\overline{M}\). This completes the proof of Lemma 1.
Lemma 2. Suppose that A and B are path-connected compact subsets of \tilde{M} such that $\text{dev}|A$ and $\text{dev}|B$ are imbeddings. Suppose that $A \cap B \neq \emptyset$ and that $\text{dev}(A) \cap \text{dev}(B)$ is a path-connected subset of S^n.

Then $\text{dev}|A \cup B$ is an imbedding onto $\text{dev}(A) \cup \text{dev}(B)$.

Proof. We only need to deduce the injectivity of $\text{dev}|A \cup B$ from the fact that given a path in S^n and an initial point in \tilde{M} there is at most one lift of the path to \tilde{M} (see [1, Proposition 1.3.1]).

Let us end this paper with the following remark: Carrière conjectured in 1988 that the homotopy groups in dimensions greater than or equal to i, $i > 1$, for an i-convex affine manifold are trivial. This conjecture is still open. What we did here may aid us in understanding similar questions for projective manifolds.

References

Topology and Geometry Research Center, Kyungpook National University, 702-701 Taegu, South Korea