Matrix transformations of power series
HTML articles powered by AMS MathViewer
- by David Borwein and Amnon Jakimovski
- Proc. Amer. Math. Soc. 122 (1994), 511-523
- DOI: https://doi.org/10.1090/S0002-9939-1994-1198451-0
- PDF | Request permission
Abstract:
We consider the sequence of transforms $({g_n})$ of a power series $\sum \nolimits _{n = 0}^\infty {{a_n}{z^n}}$ given by ${g_n}(z): = \sum \nolimits _{k = 0}^\infty {{b_{nk}}{a_k}{z^k}}$. We establish necessary and sufficient conditions on the matrix $({b_{nk}})$ for the sequence $({g_n})$ to converge uniformly on compact subsets of the disk ${D_P}: = \{ z:|z| < P\}$ to a function holomorphic on ${D_P}$.References
- E. Hille, Analytic function theory, Blaisdell, New York, 1963.
M. F. Lejá, Sur la sommation des séries entières par la méthode des moyennes, Bull. Sci. Math. (2) 54 (1930), 239-245.
- W. Luh, Über die Nörlund-Summierbarkeit von Potenzreihen, Period. Math. Hungar. 5 (1974), 47–60 (German). MR 367507, DOI 10.1007/BF02018163
- Wolfgang Luh, Summierbarkeit von Pontenzreihen—notwendige Bedingungen, Mitt. Math. Sem. Giessen 111 (1974), 48–67 (German). MR 364937
- A. Peyerimhoff, Lectures on summability, Lecture Notes in Mathematics, Vol. 107, Springer-Verlag, Berlin-New York, 1969. MR 0463744 K. Stadtmüller, Summability of power series by non-regular Nörlund methods, J. Approx. Theory 68 (1991), 33-44. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, London, 1947.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 511-523
- MSC: Primary 47B37; Secondary 30B10, 40C05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1198451-0
- MathSciNet review: 1198451