Cesàro means of Fourier transforms and multipliers on $L^ 1(\textbf {R})$
HTML articles powered by AMS MathViewer
- by Dăng Vũ Giang and Ferenc Móricz
- Proc. Amer. Math. Soc. 122 (1994), 469-477
- DOI: https://doi.org/10.1090/S0002-9939-1994-1201804-5
- PDF | Request permission
Abstract:
We prove that the Cesàro mean $\sigma$ of a multiplier $\lambda$ on ${L^1}({\mathbf {R}})$ is also a multiplier on ${L^1}({\mathbf {R}})$. In the particular cases when (i) $\lambda$ is odd, we prove that $\sigma$ is the Fourier transform of an odd function in the Hardy space ${H^1}({\mathbf {R}})$, and (ii) $\lambda$ is even, we give a necessary and sufficient condition in order that $\sigma$ be a Fourier transform of an even function in ${L^1}({\mathbf {R}})$. As a corollary, we obtain a nontrivial condition for $\lambda$ in order to be a multiplier on ${L^1}({\mathbf {R}})$; namely, \[ \int _0^\infty {\left | {\frac {1}{t}\int _0^t {\{ \lambda (\xi ) - \lambda ( - \xi )\} d\xi } } \right |} \frac {{dt}}{t} < \infty .\] We also prove Hardy type inequalities for multipliers and Hilbert transforms.References
- Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Pure and Applied Mathematics, Vol. 40, Academic Press, New York-London, 1971. Volume 1: One-dimensional theory. MR 0510857, DOI 10.1007/978-3-0348-7448-9
- Constantine Georgakis, On the arithmetic mean of Fourier-Stieltjes coefficients, Proc. Amer. Math. Soc. 33 (1972), 477–484. MR 298319, DOI 10.1090/S0002-9939-1972-0298319-3
- Günther Goes, Arithmetic means of Fourier-Stieltjes-sine-coefficients, Proc. Amer. Math. Soc. 14 (1963), 10–11. MR 145258, DOI 10.1090/S0002-9939-1963-0145258-9 G. H. Hardy, Notes on some points in the integral calculus, Messenger Math. 58 (1929), 50-52. E. Hille and J. D. Tamarkin, On the absolute integrability of Fourier transforms, Fund. Math. 25 (1935), 329-352.
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
- Constantine Georgakis, The Hausdorff mean of a Fourier-Stieltjes transform, Proc. Amer. Math. Soc. 116 (1992), no. 2, 465–471. MR 1096210, DOI 10.1090/S0002-9939-1992-1096210-9
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 469-477
- MSC: Primary 42A45; Secondary 42A38
- DOI: https://doi.org/10.1090/S0002-9939-1994-1201804-5
- MathSciNet review: 1201804