An adjoint characterization of the category of sets
Authors:
Robert Rosebrugh and R. J. Wood
Journal:
Proc. Amer. Math. Soc. 122 (1994), 409-413
MSC:
Primary 18A40; Secondary 18B05
DOI:
https://doi.org/10.1090/S0002-9939-1994-1216823-2
MathSciNet review:
1216823
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If a category B with Yoneda embedding
has an adjoint string,
, then B is equivalent to set.
- [1] Barry Fawcett and R. J. Wood, Constructive complete distributivity. I, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 1, 81–89. MR 1021874, https://doi.org/10.1017/S0305004100068377
- [2] François Foltz, Légitimité des catégories de préfaisceaux, Diagrammes 1 (1979), F1–F5 (French). MR 684432
- [3] P. J. Freyd, Abelian categories, Harper and Row, New York, 1964.
- [4] R. Paré, R. Rosebrugh, and R. J. Wood, Idempotents in bicategories, Bull. Austral. Math. Soc. 39 (1989), no. 3, 421–434. MR 995139, https://doi.org/10.1017/S0004972700003336
- [5] Robert Rosebrugh and R. J. Wood, Constructive complete distributivity. IV, Appl. Categ. Structures 2 (1994), no. 2, 119–144. MR 1283433, https://doi.org/10.1007/BF00873296
- [6] Ross Street, Notions of topos, Bull. Austral. Math. Soc. 23 (1981), no. 2, 199–208. MR 617062, https://doi.org/10.1017/S000497270000705X
- [7] -, unpublished manuscript, 1979.
- [8] Ross Street and Robert Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978), no. 2, 350–379. MR 0463261, https://doi.org/10.1016/0021-8693(78)90160-6
- [9] R. J. Wood, Some remarks on total categories, J. Algebra 75 (1982), no. 2, 538–545. MR 653907, https://doi.org/10.1016/0021-8693(82)90055-2
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18A40, 18B05
Retrieve articles in all journals with MSC: 18A40, 18B05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1216823-2
Article copyright:
© Copyright 1994
American Mathematical Society


