EVERY 3-MANIFOLD WITH BOUNDARY EMBEDS IN Triod x Triod x I

LI ZHONGMOU

(Communicated by James West)

Abstract. Let M be a compact, connected 3-manifold with nonempty boundary. Then M embeds in $T \times T \times I$, where T is a triod and $I = [0, 1]$.

1. Introduction

Gillman and Rolfsen [2] proved that every compact, orientable 3-manifold with boundary embeds in $c(p) \times c(q) \times c(r)$, where $c(n)$ denotes the cone on n points. In this paper, we improve their argument to the following:

Theorem. Let M be a compact, connected 3-manifold with nonempty boundary. Then M embeds in Triod x Triod x I.

We use the term fake 3-ball for a compact, contractible 3-manifold which is not homeomorphic to the 3-ball I^3; and let \cong and \leftrightarrow denote homeomorphism and embedding, respectively. According to the theorem, the 3-dimensional Poincaré conjecture is equivalent to (also see [2]):

Conjecture. There is no fake 3-ball in $T \times T \times I$.

Gillman [1] proved that if a compact 3-dimensional M embeds in $c(p) \times I \times I$ and has trivial rational homology, then $M \cong I^3$. This fact, indicates that the above conjecture is true for 3-manifolds in $T \times I \times I$. On the other hand, our theorem answers Gillman's question in [1] in the negative.

2. A Lemma

Let $K = T \times I$, PQ be the binding $v \times I$ for the vertex v of order 3 of T and α, β, γ be the three pages (i.e., rectangles) of $T \times I$. We will use $A_i A_j$ to denote the line segment whose endpoints are A_i, A_j.

Definition. Suppose disjoint annuli G_1, G_2, \ldots, G_n, lie in K. If $(\bigcup_{i=1}^n G_i) \cap PQ$ is some line segment and each of the line segments has a regular neighborhood which consists of two discs such that each of the discs exactly lie in a page, then we say that G_1, G_2, \ldots, G_n are transversal in K and call the discs of $(\bigcup_{i=1}^n G_i) \cap \alpha$, $(\bigcup_{i=1}^n G_i) \cap \beta$, $(\bigcup_{i=1}^n G_i) \cap \gamma$ band discs.

Received by the editors May 25, 1992.

1991 Mathematics Subject Classification. Primary 57N10, 57N35, 57Q35.
Definition. Let annuli G_1, G_2, \ldots, G_n be transversal in K. Suppose that K lies in R^3 and α is above $\beta \cup \gamma$. Then we say that K lies in R^3 standardly and call $\bigcup_{i=1}^{n} \text{Bd} G_i$ a band link in $K \subset R^3$.

Definition. Let annuli G_1, G_2, \ldots, G_n be transversal in K and band disc $X \subset \alpha$. Suppose $\bigcup_{i=1}^{n} G_i$ does not intersect the shade region of Figure 1. Then we move X to X' as in Figure 1 to get new annuli. We call such a move an elementary move. Compositions of elementary moves are called I-moves.

Clearly, suppose that annuli $\bigcup_{i=1}^{n} G_i \subset K$ I-moves to $\bigcup_{i=1}^{n} G_i'$; then there is an embedding $H: (\bigcup_{i=1}^{n} G_i) \times I \rightarrow K \times I$ such that $H((\bigcup_{i=1}^{n} G_i) \times 0) = \bigcup_{i=1}^{n} G_i \subset K \times 0$ and $H((\bigcup_{i=1}^{n} G_i) \times 1) = \bigcup_{i=1}^{n} G_i' \subset K \times 1$.

Lemma. Let annuli G_1, G_2, \ldots, G_n be transversal in $K \times A_1$, where A_1 is a point. Then there are n disjoint 3-balls B_1, B_2, \ldots, B_n in $K \times (A_1A_2 \cup A_2A_3 \cup A_3A_4)$ such that $G_i \subset \text{Bd} B_i$ ($i = 1, 2, \ldots, n$).

Proof. Suppose that if we let $K \times A_1$ lie in R^3 standardly, then we only need change the crossing relations of m pairs of band discs $(X_1, X_1'), \ldots, (X_m, X_m')$ to get new annuli whose central curve is a trivial link in R^3.

For band discs X_1, X_1', we have an I-move, I_1, a pair of new band discs (Y_1, Y_1'), and annuli $G_1' = I_1(G_1)$ ($i = 1, 2, \ldots, n$) as in Figure 2. Note that we can replace changing the crossing relation between X_1 and X_1' with changing the crossing relation between Y_1 and Y_1'. For $I_1(X_2), I_1(X_2')$, using a similar method, we get $I_2, (Y_2, Y_2'),$ and $G_2', \ldots, G_n', \ldots$. For $I^{m-1}I^{m-2}\ldots I_1(X_m)$ and $I^{m-1}I^{m-2}\ldots I_1(X_m')$, we get $I_m, (Y_m, Y_m'),$ and $G_1^{(m)}, \ldots, G_n^{(m)}$.

Let $I' = I^{m-1}I^{m-2}\ldots I_1$. Then $G_i^{(m)} = I'(G_i)$ ($i = 1, 2, \ldots, n$). We still use Y_i, X_i' to denote $I_1I_1\ldots I_i(Y_i), I_1I_1\ldots I_i(X_i')$, respectively ($i = 1, 2, \ldots, m$).

Suppose that $K \times A_1$ lies in R^3 standardly. If we change the crossing relations of the pairs $(Y_1, Y_1'), \ldots, (Y_m, Y_m')$ in R^3 to get new annuli H_1, H_2, \ldots, H_n, then the central curve of new annuli is a trivial link in R^3. Suppose that H_i has k_i twists in R^3 ($i = 1, 2, \ldots, n$). Then we I-move $G_i^{(m)}, \ldots, G_n^{(m)}$ to get annuli L_1, L_2, \ldots, L_n as Figure 3. We denote this I-move as I' and denote the shade band discs of Figure 3 as $Y_{m+1}, Y_{m+2}, \ldots, Y_{m'}$ ($m' = m+k_1+k_2+\ldots+k_n$). Note that in Figure 3, if we change the band discs $Y_1, Y_2, \ldots, Y_{m'}$ of L_1, L_2, \ldots, L_n under $\beta \cup \gamma$ in R^3, then we obtain annuli whose boundary curve is a trivial link in R^3.
EVERY 3-MANIFOLD WITH BOUNDARY EMBEDS IN $\text{Trio}_d \times \text{Trio}_d \times I$

Figure 2

Let I-move $I = I''I'$. Then there is an embedding $H: (\bigcup_{i=1}^{n} G_i) \times A_1 A_2 \hookrightarrow K \times A_1 A_2$ such that

$$H\left(\left(\bigcup_{i=1}^{n} G_i\right) \times A_1\right) = \left(\bigcup_{i=1}^{n} G_i\right) \subset K \times A_1$$

and

$$H\left(\left(\bigcup_{i=1}^{n} G_i\right) \times A_2\right) = \left(\bigcup_{i=1}^{n} L_i\right) \subset K \times A_2$$
Consider $\alpha \times (A_2A_3 \cup A_4A_2) \cong I^3$. For $Y_1, Y_2, \ldots, Y_{m'}$, we give band discs $Z_1, Z_2, \ldots, Z_{m'}$ in $PQ \times A_4A_2$; for the other band discs of $(\bigcup_{i=1}^{n} L_i) \cap (\alpha \times A_2)$, we give band discs $Z_{m'+1}, Z_{m'+2}, \ldots, Z_{m''} \subset PQ \times A_3$. Then we get m'' small annuli in $\alpha \times (A_2A_3 \cup A_4A_2)$. Note that there are m'' disjoint 3-balls $B_1, B_2, \ldots, B_{m''}$ in $\alpha \times (A_2A_3 \cup A_4A_2)$ such that the small annuli lie in the boundary surfaces of the 3-balls, respectively. (See Figure 4.)

Let $L' = (\bigcup_{i=1}^{m''} Z_i) \cup (\bigcup_{i=1}^{n} L_i) \cap (\beta \cup \gamma)$. Then L' is n annuli L'_1, L'_2, \ldots, L'_n and whose boundary curve is a trivial link in $(\beta \cup \gamma) \times (A_2A_3 \cup A_4A_2) \cong I^3$. Therefore, there are n disjoint 3-balls B'_1, B'_2, \ldots, B'_n in $(\beta \cup \gamma) \times (A_2A_3 \cup A_4A_2)$ such that these annuli lie in the boundary surfaces of the 3-balls, respectively.

$H((\bigcup_{i=1}^{n} G_i) \times A_4A_2) \cup (\bigcup_{i=1}^{m''} B_i) \cup (\bigcup_{i=1}^{n} B'_i)$ are n disjoint 3-balls in $K \times (A_1A_2 \cup A_2A_3 \cup A_4A_2) \cong T \times T \times I$ and G_1, G_2, \ldots, G_n lie in the boundary surfaces of these 3-balls.

3. A Proof of the Theorem

We only need to prove the theorem in the case that $M \cong N - \text{Int} B$ for a closed 3-manifold N and a 3-ball $B \subset N$. If we let M be any compact 3-manifold with boundary and N be the closed 3-manifold given by attaching 3-dimensional handles to Bd M, then, by [3, Theorem 1.5], $M \subset N - \text{Int} C \cong N - \text{Int} B$, where C is a 3-ball in $N - \text{Int} M$ and B is any 3-ball in N.

Suppose that (V_1, V_2) is a Heegaard splitting of N. Let (D_1, D_2, \ldots, D_n) be a collection of pairwise disjoint property embedded 2-discs in V_1 which cut V_1 into a 3-ball, and let annuli G_1, G_2, \ldots, G_n be disjoint regular neighborhoods of the boundary curves J_1, J_2, \ldots, J_n of D_1, D_2, \ldots, D_n in Bd $V_1 = \text{Bd} V_2$, respectively.

We choose a proper 2-disc D in Bd V_2 such that D does not intersect the annuli. Then we have (see Figure 5) $V_2 \cong ((\text{Bd} V_2 - \text{Int} D) \times I) \cup (\bigcup_{i=1}^{n} E_i)$, where E_1, E_2, \ldots, E_n are 3-balls in V_2 and $(\bigcup_{i=1}^{n} \text{Bd} E_i) \cap ((\text{Bd} V_2 - \text{Int} D) \times 0)$ are annuli F_1, F_2, \ldots, F_n.
EVERY 3-MANIFOLD WITH BOUNDARY EMBEDS IN $\text{Triod} \times \text{Triod} \times I$

Clearly, $(\text{Bd}V_2 - \text{Int}D) \times 0$ embeds in $K \times C_1$ for a point C_1. Then we have $(\text{Bd}V_2 - \text{Int}D) \times I \hookrightarrow K \times C_1 C_2$ such that annuli G_1, G_2, \ldots, G_n are transversal in $K \times C_2$ and annuli F_1, F_2, \ldots, F_n are transversal in $K \times C_1$. Therefore, by the lemma, $\bigcup_{i=1}^n E_i \hookrightarrow (K \times C_1 A_1 \cup A_1 A_2 \cup A_3 A_1)$. Then, $M \hookrightarrow K \times C_3 C_3 \cup C_3 C_4 \cup C_2 C_3 \cup C_1 C_2 \cup C_1 A_1 \cup A_1 A_2 \cup A_3 A_1) \cong T \times H \times I$. Note that $H \times I \hookrightarrow T \times I$. (This can be seen by drawing a picture.) Therefore, $M \hookrightarrow T \times T \times I$.

Remark. Mr. Dale Rolfsen told me the fact that $H \times I \hookrightarrow T \times I$.

Considering the proof of the theorem, we get the following corollary easily.

Corollary. Suppose that V_2 lies in R^3 trivially. Then $\bigcup_{i=1}^n \text{Bd}G_i$ and $\bigcup_{i=1}^n J_i$ are links in R^3. If the band link $\bigcup_{i=1}^n \text{Bd}G_i$ is a trivial link, then $M \hookrightarrow T \times I \times I$; if $\bigcup_{i=1}^n J_i$ is a trivial link, then M has a standard spine which embeds in $T \times I \times I$.

In particular, by [1], the band link of any Heegaard splitting of a punctured lens space is not trivial in R^3. On the other hand, $L(p, 1) - B$ has standard spine in $T \times I \times I$, where B is a 3-ball in $L(p, 1)$.

4. Acknowledgment

The author thanks Professor Rolfsen and Professor Gillman for finding mistakes in the manuscript and for helping me to correct them. The author also thanks Professor Matveev, Mr. Djun Kim, and Mr. Zhu Jun for discussing the proof with me.

References

