AUSLANDER'S δ-INVARIANTS OF GORENSTEIN LOCAL RINGS

SONGQING DING

(Communicated by Eric Friedlander)

Abstract. Let (R, m, k) be a Gorenstein local ring with associated graded ring $G(R)$. It is conjectured that for any integer $n > 0$, Auslander's δ-invariant $\delta(R/m^n)$ of R/m^n equals 1 if and only if m^n is contained in a parameter ideal of R. In an earlier paper we showed that the conjecture holds if $G(R)$ is Cohen-Macaulay. In this paper we prove that the conjecture has an affirmative answer if depth $G(R) = \text{dim } R - 1$ and R is gradable. We also prove that if R is not regular and depth $G(R) > \text{dim } R - 1$, then $\delta(R/m^2) = 1$ if and only if R has minimal multiplicity.

Introduction

Throughout this paper we assume that (R, m, k) is a commutative Noetherian Gorenstein local ring (or a graded Gorenstein k-algebra with unique maximal graded ideal m), and all modules are finitely generated. For an R-module M, there is an exact sequence of R-modules

$$0 \rightarrow Y_M \rightarrow X_M \overset{\varphi}{\rightarrow} M \rightarrow 0$$

where X_M is a maximal Cohen-Macaulay module, Y_M is a module of finite projective dimension, and φ is right minimal, i.e., all endomorphisms $\alpha : X_M \rightarrow X_M$ with $\varphi \circ \alpha = \varphi$ are isomorphisms (see [1, 2]). This sequence is called the minimal Cohen-Macaulay approximation of M. It is uniquely determined (up to isomorphism) by M. The theory of Cohen-Macaulay approximations was initiated by Auslander and Buchweitz. The rank of a maximal free direct summand of X_M is denoted by $\delta_R(M)$ (or simply $\delta(M)$) and is called the δ-invariant of M (over R) by Auslander.

One of the main questions is how the δ-invariant of M reflects the structures of M and of R. If M is a module of finite projective dimension, the minimal Cohen-Macaulay approximation of M is just the minimal free resolution of M. If an R-module M has a factor module which is of finite projective dimension, then $\delta(M) > 0$ [1, 3]. Thus the δ-invariant of M can be regarded as a measure of how far the module M is from being of finite projective dimension. It was first conjectured that for an R-module M, $\delta(M) > 0$ if and only if M has a factor module of finite projective dimension. Unfortunately this is not the
case in general (see the example in §2). However, the modules of the form $M = R/\mathfrak{m}^n$, $n \geq 1$, seem special. Following [3] and [5] we showed in [4] that if the associated graded ring $G(R)$ of R is Cohen-Macaulay then $\delta(R/\mathfrak{m}^n) = 1$ if and only if \mathfrak{m}^n is contained in a parameter ideal of R. Here an ideal I is called a parameter ideal if it is generated by a system of parameters of R. We then conjectured that this is true in general, i.e., without the assumption on $G(R)$. In this paper we give further evidence for the conjecture. We show that if R is a graded Gorenstein k-algebra such that depth $G(R) \geq \dim R - 1$, then the conjecture holds for R. We call a local ring (R, \mathfrak{m}, k) gradable if the completion \hat{R} of R at its maximal ideal \mathfrak{m} is isomorphic to the completion of a graded k-algebra at the graded maximal ideal. Since the δ-invariants behave well under faithfully flat ring extensions [1], we have that the conjecture holds for a Gorenstein local ring R if R is gradable and $\dim G(R) \geq \dim R - 1$.

It is known that $\delta(R/\mathfrak{m}) = 1$ if and only if R is a regular local ring [3]. We show that for a Gorenstein local ring R with depth $G(R) \geq \dim R - 1$, $\delta(R/\mathfrak{m}^2) = 1$ if and only if \mathfrak{m}^2 is contained in a parameter ideal of R. If R is not regular, then by a result of Sally [6], R has minimal multiplicity.

The results in this paper are based on a particular description of the minimal Cohen-Macaulay approximation of a module M with depth $M = \dim R - 1$.

1. A CONSTRUCTION OF MINIMAL COHEN-MACALAY APPROXIMATION

In this section we assume that (R, \mathfrak{m}, k) is a Gorenstein local ring. We denote by $\mu(M)$ the minimal number of generators of an R-module M. Let M be an R-module with depth $M = \dim R - 1$. The following description of the minimal Cohen-Macaulay approximation of M seems well known.

Proposition 1.1 [1]. Let M be an R-module with depth $M = \dim R - 1$, and let $0 \to Y_M \to X_M \to M \to 0$ be the minimal Cohen-Macaulay approximation of M. Then $Y_M \cong R^n$, where $n = \mu(\text{Ext}^1(M, R))$.

Proof. Since M is not a maximal Cohen-Macaulay module, we have

$$\text{Ext}^1(M, R) \neq (0).$$

Let ξ_1, \ldots, ξ_n be a minimal set of generators of $\text{Ext}^1(M, R)$, and let E be the extension of M by R^n corresponding to the element (ξ_1, \ldots, ξ_n) of $\text{Ext}^1(M, R^n) \cong \bigoplus_n \text{Ext}^1(M, R)$. Applying the functor $\text{Hom}(\ , R)$ to the exact sequence

$$0 \to R^n \to E \to M \to 0$$

yields a long exact sequence

$$0 \to \text{Hom}(M, R) \to \text{Hom}(E, R) \to \text{Hom}(R^n, R) \to \text{Ext}^1(M, R) \to \text{Ext}^1(E, R) \to 0,$$
and $\text{Ext}^i(E, R) = (0)$ for $i \geq 2$. By the choice of E, the map ψ is surjective. Therefore, $\text{Ext}^1(E, R) = (0)$. Hence E is a maximal Cohen-Macaulay R-module. Since $n = \mu(\text{Ext}^1(M, R))$, (1) in fact is the minimal Cohen-Macaulay approximation of M. \(\square\)

As an application of Proposition 1.1, we have the following result on the δ-invariant of M.

Proposition 1.2. Let M be an R-module with depth $M = \dim R - 1$. Then

$$\delta(M) = \mu(M) + \mu(\text{Ext}^1(M, R)) - \mu(\text{Hom}(\Omega(M), R))$$

where $\Omega(M)$ is the first syzygy of M.

Proof. We put $s = \mu(M)$, $n = \mu(\text{Ext}^1(M, R))$, and $t = \mu(\text{Hom}(\Omega(M), R))$. We have the short exact sequence $0 \to \Omega(M) \to R^s \to M \to 0$. Let $0 \to R^n \to X_M \to M \to 0$ be the minimal Cohen-Macaulay approximation of M. We can construct the following pullback diagram:

$$
\begin{array}{c}
0 & \to & 0 \\
\downarrow & & \downarrow \\
R^n & = & R^n \\
\downarrow & & \downarrow \\
0 & \to & \Omega(M) \\
\downarrow & & \downarrow \\
0 & \to & F \\
\downarrow & & \downarrow \\
0 & \to & X_M \\
\end{array}
$$

Thus we have $F \cong R^n \oplus R^s$. On the other hand, $\Omega(M)$ is a maximal Cohen-Macaulay R-module. Applying the functor $\text{Hom}(\ , R)$ to the middle row, we obtain an exact sequence

$$0 \to \text{Hom}(X_M, R) \to \text{Hom}(F, R) \to \text{Hom}(\Omega(M), R) \to 0.$$

Therefore, $F \cong R^t \oplus R^{\delta(M)}$. Hence, we get $\delta(M) + t = s + n$. \(\square\)

2. **One-dimensional rings**

In this section (R, m, k) will always be a 1-dimensional Gorenstein local ring. For any R-module M, we denote by $\text{soc}(M)$ the socle of M, i.e., $\text{soc}(M) = \{x \in M \mid mx = 0\}$. If M is of finite length, we denote by $l(M)$ the length of M. We put $M^* = \text{Hom}(M, R)$. In this section we always assume that I is a regular ideal of R, i.e., the ideal I contains a regular element of R. In this section we illustrate and apply the results in §1 to the cyclic modules over R.

First we have

Proposition 2.1. Let I be an ideal of R. Then

$$\delta(R/I) = 1 + l(\text{soc}(R/I)) - \mu(I^*).$$

In particular, we have $\delta(R/I) > 0$ if and only if $l(\text{soc}(R/I)) = \mu(I^*)$.

\(\text{AUSLANDER'S } \delta\text{-INTEGRANTS} \quad 651\)
Proof. By Proposition 1.2 it suffices to show that $l(soc(M)) = \mu(Ext^1(M, R))$ for an R-module M. Let N be the maximal finite length submodule of M. Applying the functor $\text{Hom}(_ , R)$ to the exact sequence $0 \to N \to M \to M/N \to 0$, we obtain an isomorphism $Ext^1(N, R) \cong Ext^1(M, R)$ since M/N is a maximal Cohen-Macaulay module. Therefore, $l(soc(M)) = \mu(Ext^1(N, R)) = \mu(Ext^1(M, R))$. Since $\delta(R/I) \leq 1$ for any ideal I of R [1], we get the second statement. \[\square\]

Let $x \in m$ be an arbitrary R-regular element. The formula in Proposition 2.1 can be written in the following form.

Corollary 2.2. Let $x \in m$ be R-regular. Then

$$\delta(R/I) = 1 + l(soc(R/I)) - l(soc(I/\bar{x}I)),$$

and $\delta(R/I) = 1$ if and only if $l(soc(R/I)) = l(soc(I/\bar{x}I))$.

Proof. We need only show that $\mu(I^*) = l(soc(I/\bar{x}I))$ for any regular element x of R. The exact sequence $0 \to R \xrightarrow{x} R \to R/\bar{x}R \to 0$ gives rise to an exact sequence $0 \to I^* \xrightarrow{\delta} I^* \to \text{Hom}_R(I/\bar{x}I, R/\bar{x}R) \to 0$. Since $x \in m$, we have $\mu(I^*) = l(\text{Hom}(I/\bar{x}I, R/\bar{x}R)) = l(soc(I/\bar{x}I))$. \[\square\]

As a consequence of the Proposition 2.1 we have

Corollary 2.3. Let I be a Gorenstein ideal of R. Then $\delta(R/I) = 1$ if and only if I is a principal ideal.

Proof. Since R/I has a simple socle, we have $\delta(R/I) = 1$ if and only if I^* is generated by one element. Hence I^* is a free R-module of rank one. Applying the functor $\text{Hom}(_ , R)$ to the exact sequence $0 \to I \to R \to R/I \to 0$ gives an exact sequence $0 \to R \xrightarrow{x} R \to Ext^1(R/I, R) \to 0$. Therefore, $Ext^1(R/I, R) \cong R/(x)$ for some regular element x of R. Since I is a Gorenstein ideal, we get $R/I \cong Ext^1(R/I, R)$, and this implies that $I = (x)$. \[\square\]

Now we consider another case. Let $Q(R)$ be the total ring of quotients of R with respect to the R-regular elements, and let $I^{-1} = \{z \in Q(R) \mid zI \subseteq R\}$. Then we know that there exists a natural R-isomorphism $\phi_I: I^{-1} \to I^*$ given by sending $z \in I^{-1}$ to the morphism in I^* defined as multiplication by z. Also we have $I \subseteq II^{-1} \subseteq R$. If $II^{-1} = R$, then I is a principal ideal and so $\delta(R/I) = 1$. We now consider the case where $II^{-1} = I$. We first give the following criterion.

Proposition 2.4. $\delta(R/I) = 1$ if and only if $R \subset mI^{-1}$.

Proof. We have the following commutative exact diagram

$$\begin{array}{ccccccccc}
0 & \to & R & \xrightarrow{\alpha} & I^{-1} & \to & \text{coker} \alpha & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & \to & R^* & \to & I^* & \to & Ext^1(R/I, R) & \to & 0 \\
\end{array}$$

where α is the natural inclusion and all the vertical arrows are isomorphisms. By Proposition 2.1, $\delta(R/I) = 1$ if and only if $\mu(I^*) = \mu(Ext^1(R/I, R))$. Hence we have $\delta(R/I) = 1$ if and only if $\text{Im} \alpha \subset mI^{-1}$. \[\square\]

As a consequence we have
Corollary 2.5. If $II^{-1} = I$, then $\delta(R/I) = 0$.

Proof. We must show that $R \notin mI^{-1}$. Suppose $R \subset mI^{-1}$; then we have $I \subset mI^{-1} \subset mI$ since $II^{-1} = I$. This implies that $I = mI$, which is impossible by Nakayama's Lemma. □

Remark. The condition $II^{-1} = I$ in fact characterizes the conductors of the overlings of R in $Q(R)$. Recall that for an overring R' with $R \subset R' \subset Q(R)$, the conductor c of R' in R is defined by $c = \{ z \in Q(R) | zR' \subset R \}$. Here c is an ideal of R. It is easy to check that if c is the conductor of an overring R' in R, then $cc^{-1} = c$. Conversely, if $II^{-1} = I$, then I is the conductor of $\phi^{-1}(\text{End}(I))$ in R, where $\phi_I: I^{-1} \to I^*$ is the natural isomorphism and $\text{End}(I) \subset I^*$.

Now we return to the question in the introduction. If I is contained in an ideal J of finite projective dimension (in our situation J has to be a principal ideal), then we know that $\delta(R/I) = 1$. The converse is not true in general.

Example. Let $R = k[[t^3, t^4]]$ where k is a field, and let $I = (t^8 + t^9, t^{10})$. It is not hard to check by direct calculation that

(a) I is not contained in any principal ideal of R, and
(b) $l(\text{soc}(R/I)) = l(\text{soc}(I/t^3I)) = 2$.

Therefore, $\delta(R/I) = 1 + l(\text{soc}(R/I)) - l(\text{soc}(I/t^3I)) = 1$ by Corollary 2.2, but R/I has no factor module of finite projective dimension.

3. The conjecture

Let (R, m, k) be a Gorenstein local ring (or a graded Gorenstein k-algebra with a unique graded maximal ideal m). We showed in [4] that if the associated graded ring $G(R)$ of R is Cohen-Macaulay, then for any integer $n > 0$, $\delta(R/m^n) = 1$ if and only if there exists an R-sequence x such that $m^n \subset (x)$. Rings with $G(R)$ Cohen-Macaulay include hypersurface rings and homogeneous Gorenstein k-algebras. (A graded k-algebra is called homogeneous if it is generated by degree 1 elements over k.)

Conjecture. Let (R, m, k) be a Gorenstein local ring (or a graded Gorenstein k-algebra with a unique graded maximal ideal m). For any integer $n > 0$, $\delta(R/m^n) = 1$ if and only if there is an R-sequence x such that $m^n \subset (x)$.

In this section we show two results related to the conjecture. In both cases we assume that R satisfies the condition $\text{depth} G(R) \geq \dim R - 1$. We first use the criterion for $\delta(R/I) = 1$ that we developed in §2 to prove the one-dimensional case. Then we reduced the general case to the one-dimensional case by the result of [4].

Theorem 3.1. Let R be a 1-dimensional graded Gorenstein k-algebra. For any graded ideal I of R, $\delta(R/I) = 1$ if and only if $I \subset (x)$, where x is a homogeneous regular element of R. In particular, the conjecture holds for R.

Proof. According to Proposition 2.4, $\delta(R/I) > 0$ if and only if $R \subset mI^{-1}$. In particular, $\delta(R/I) > 0$ implies that $1 \in mI^{-1}$. Suppose $1 = \sum_{i=1}^{I} z_i x_i/y_i$ where x_i, y_i, and z_i are homogeneous elements of degree at least one and $x_i/y_i \in I^{-1}$ for all i. By comparing degrees we know that there is an i such that
\[
\deg(z_i x_i / y_i) = \deg z_i + \deg x_i - \deg y_i = 0. \text{ Therefore, we have } 1 = u z_i x_i / y_i \text{ with } u \in k. \text{ This implies that } x_i / y_i = 1 / (uz_i). \text{ Hence we get } I \subseteq (z_i). \]

Remark. Let \(R \) be a 1-dimensional complete local Gorenstein domain containing an algebraically closed field \(k \). It is known that \(R \) is the completion of a graded \(k \)-algebra with respect to its irrelevant maximal ideal \([7]\). Therefore, the conjecture holds for such rings.

In \([4]\) we showed the following, which allows us to use a reduction argument.

Lemma 3.2 \([4]\). Let \((R, m, k)\) be a Gorenstein local ring (or a graded Gorenstein k-algebra). Let \(x \in m \setminus m^2 \) be \(R \)-regular. Set \(\tilde{R} = R / xR \). Suppose the induced map \(\tilde{x} : m^i / m^i \rightarrow m^i / m^{i+1} \) is injective for \(i \geq 0 \). Then \(\delta_R(R/m^i) = 1 \) if and only if \(\delta_R(R/(m^i, x)) = 1 \) for \(i \geq 1 \).

Combining this lemma and Theorem 3.1 we now obtain

Corollary 3.3. Let \((R, m, k)\) be a graded Gorenstein k-algebra. Let \(G(R) \) be the associated graded ring of \(R \). If \(\text{depth } G(R) \geq \text{dim } R - 1 \), then the conjecture holds for \(R \).

Recall that a local ring \((R, m, k)\) is said to be gradable if the completion \(\hat{R} \) of \(R \) at its maximal ideal \(m \) is isomorphic to the completion of a graded \(k \)-algebra at its unique maximal graded ideal. Since the \(\delta \)-invariants behave well under faithfully flat ring extensions \([1]\), we have

Corollary 3.4. Let \((R, m, k)\) be a Gorenstein local ring. If \(R \) is gradable and \(\text{depth } G(R) \geq \text{dim } R - 1 \), then the conjecture holds for \(R \).

Example. Let \(R = k[[x, y, z]]/I \) where \(I = (x^3 + y^9, x^2 z^4 + y^7) \). Then \(G(R) = k[x, y, z]/J \), with \(J = (x^3, x^2 z^4, xy^7, y^{14}) \), is not Cohen-Macaulay. However, it is easily checked that \(R \) is gradable. This gives an example where \(G(R) \) is not Cohen-Macaulay, but the conjecture holds for \(R \). In this case \(\delta(R/m^i) = 0 \) for \(i < 7 \) and \(\delta(R/m^8) = 1 \).

It is known that \(\delta(R/m) = 1 \) implies that \(m \) is contained in a parameter ideal of \(R \). Therefore, \(R \) is a regular local ring. In dealing with the case where \(\delta(R/m^2) = 1 \), we have

Theorem 3.5. Let \((R, m, k)\) be a 1-dimensional Gorenstein local ring. Then \(\delta(R/m^2) = 1 \) if and only if \(m^2 \subseteq (x) \) for some \(x \in R \).

Proof. The "if" part is obvious. Now let \(\delta(R/m^2) > 0 \). Set \(I = m^2 \). By Proposition 2.4 we have that \(\delta(R/I) > 0 \) if and only if \(R \subseteq mI^{-1} \) if and only if \(1 = \sum r_i u_i \), where \(r_i \in m \) and \(u_i \in I^{-1} \). We define

\[
l = \min \left\{ n \mid 1 = \sum_{i=1}^n r_i u_i, \quad r_i \in m, \quad u_i \in I^{-1} \right\}.
\]

To show that \(m^2 \subseteq (x) \) for some \(R \)-regular element \(x \) is equivalent to showing that \(l = 1 \). We now assume that \(l > 1 \) and \(\mu(m) \geq 3 \) and derive a contradiction. (If \(\mu(m) = 2 \), then \(R \) is a hypersurface and we know the conjecture is true.)
Let \(t \in m \setminus m^2 \) be \(\mathcal{R} \)-regular. Then \(u_i \) can be written in the form \(u_i = z_i/t^2 \) with \(z_i \in \mathcal{R} \). We assume that all \(z_i \) are in \(m \) (otherwise, we have \(l = 1 \)). Thus we have

\[
1 = \frac{\sum r_iz_i}{t^2} + \frac{\sum s_ix_i}{t}
\]

where \(z_i/t^2, x_i/t \) are in \(I^{-1} \). We assume that \(r_i, s_i, z_i, x_i \in m \) (otherwise, \(l = 1 \)) and \(z_i, s_ix_i \notin \mathcal{R} \).

Now consider \(z_i/t^2 \in I^{-1} \) with \(z_i \in m \) and \(z_i \notin \mathcal{R} \). We have \(z_im/t = z_itm/t^2 \subset \mathcal{R} \), i.e., \(z_im \subset tR \). Therefore, under the reduction map \(\mathcal{R} \to \overline{\mathcal{R}} = \mathcal{R}/t\mathcal{R} \), we have \(\overline{z_i} \in \text{soc}(\mathcal{R}/t\mathcal{R}) \). Let \(z_j/t^2 \) be another element in \(I^{-1} \) with \(z_j \in m \) and \(z_j \notin t\mathcal{R} \). The same argument shows that \(\overline{z_j} \in \text{soc}(\mathcal{R}/t\mathcal{R}) \). Since \(\mathcal{R}/t\mathcal{R} \) has simple socle, we get \(z_j = az_j + ty_j \) where \(a \in \mathcal{R} \) and \(y_j \in \mathcal{R} \). This implies that \(y_i/t \in I^{-1} \). Hence (2) can be written in the form

\[
1 = \frac{rz}{t^2} + \frac{\sum_{i=1}^{l-1} s_ix_i}{t}
\]

where \(z/t^2, x/t \) are in \(I^{-1} \), \(r, s_i \in m \), and \(z, s_ix_i \notin t\mathcal{R} \). We assume that \(z \) and \(x_i \) are in \(m \), and both \(rz/t^2 \) and \(\sum s_ix_i/t \) are not in \(m \) (otherwise, we are done).

Since \(\sum s_ix_i \notin t\mathcal{R} \), we may assume that \(s_1x_1 \notin t\mathcal{R} \). However, we have \(s_1x_1m \subset t\mathcal{R} \), that is, under the reduction map \(\mathcal{R} \to \overline{\mathcal{R}} = \mathcal{R}/t\mathcal{R} \), \(\overline{s_1x_1} \in \text{soc}(\mathcal{R}/t\mathcal{R}) \). Since \(\mathcal{R} \) is Gorenstein, we get \(s_1x_1 = az + ty \) with \(a, y \in \mathcal{R} \) and so

\[
\frac{s_1x_1}{t} = \frac{az + ty}{t^2} + y.
\]

If \(y \in m \), we get

\[
1 - y = \frac{(r + at)z}{t^2} + \frac{\sum_{i=2}^{l-1} s_ix_i}{t},
\]

contrary to the minimality of \(l \). Therefore, \(y \) is a unit in \(\mathcal{R} \) and (3) then can be written in the form

\[
1 = \frac{rz}{t^2} + \frac{ux}{t}
\]

where \(z/t^2, x/t \) are in \(I^{-1} \), \(z, x, r, u \in m \), and \(z, x \notin t\mathcal{R} \). We now consider the two induced linear maps

\[
\overline{x} : m/m^2 \to \mathcal{R}/t\mathcal{R} \quad \text{and} \quad \overline{z} : m/m^2 \to \mathcal{R}/t^2\mathcal{R}.
\]

We have that \(\text{Im} \overline{x} \subset \text{soc}(\mathcal{R}/t\mathcal{R}) \) and \(\text{Im} \overline{z} \subset \text{soc}(\mathcal{R}/t^2\mathcal{R}) \). Therefore,

\[
\dim_k \text{Ker} \overline{x} \geq \mu(m) - 1 \quad \text{and} \quad \dim_k \text{Ker} \overline{z} \geq \mu(m) - 1.
\]

Since \(\mu(m) \geq 3 \), we have \(\text{Ker} \overline{x} \cap \text{Ker} \overline{z} \neq (0) \). Thus there exists \(s \in m \setminus m^2 \) such that \(zs \in t^2\mathcal{R} \) and \(xs \in t\mathcal{R} \). Suppose \(zs = t^2y, xs = tw \). Then \(w \in m \).

If \(y \) is a unit of \(\mathcal{R} \), then \(s \) is \(\mathcal{R} \)-regular and \(z/t^2 = y/s \). This implies that \(m^2 \subset (s) \) and \(l = 1 \). Suppose \(y \in m \); then multiplying both sides of (5) by \(s \) yields \(s = ry + uw \in m^2 \). This is a contradiction since \(s \in m \setminus m^2 \), and the proof is complete. \(\square \)
Combining this result and Lemma 3.2 we obtain the following.

Corollary 3.6. Let \((R, m, k)\) be a Gorenstein local ring. Suppose that
\[\text{depth } G(R) \geq \text{dim } R - 1.\]
Then \(\delta(R/m^2) = 1\) if and only if \(m^2\) is contained in a parameter ideal of \(R\). In particular, if \(R\) is not regular, then \(\delta(R/m^2) = 1\) if and only if \(R\) has minimal multiplicity.

ACKNOWLEDGMENT

I would like to thank Professor Maurice Auslander for introducing me to this subject and for stimulating discussions during the preparation of this paper.

REFERENCES