Fixed point iteration processes for asymptotically nonexpansive mappings
HTML articles powered by AMS MathViewer
- by Kok-Keong Tan and Hong Kun Xu
- Proc. Amer. Math. Soc. 122 (1994), 733-739
- DOI: https://doi.org/10.1090/S0002-9939-1994-1203993-5
- PDF | Request permission
Abstract:
Let X be a uniformly convex Banach space which satisfies Opial’s condition or has a Fréchet differentiable norm, C a bounded closed convex subset of X, and $T:C \to C$ an asymptotically nonexpansive mapping. It is then shown that the modified Mann and Ishikawa iteration processes defined by ${x_{n + 1}} = {t_n}{T^n}{x_n} + (1 - {t_n}){x_n}$ and ${x_{n + 1}} = {t_n}{T^n}({s_n}{T^n}{x_n} + (1 - {s_n}){x_n}) + (1 - {t_n}){x_n}$, respectively, converge weakly to a fixed point of T.References
- S. C. Bose, Weak convergence to the fixed point of an asymptotically nonexpansive map, Proc. Amer. Math. Soc. 68 (1978), no. 3, 305–308. MR 493543, DOI 10.1090/S0002-9939-1978-0493543-4
- Ronald E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), no. 2-3, 107–116. MR 531254, DOI 10.1007/BF02764907
- D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. (2) 25 (1982), no. 1, 139–144. MR 645871, DOI 10.1112/jlms/s2-25.1.139
- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174. MR 298500, DOI 10.1090/S0002-9939-1972-0298500-3
- R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743–749. MR 595102, DOI 10.1216/RMJ-1980-10-4-743
- Shiro Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. MR 336469, DOI 10.1090/S0002-9939-1974-0336469-5
- Zdzisław Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 211301, DOI 10.1090/S0002-9904-1967-11761-0
- Gregory B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), no. 2, 212–216. MR 637171, DOI 10.1090/S0002-9939-1982-0637171-7
- Simeon Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 274–276. MR 528688, DOI 10.1016/0022-247X(79)90024-6
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), no. 1, 153–159. MR 1086729, DOI 10.1017/S0004972700028884
- Jürgen Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), no. 2, 407–413. MR 1117571, DOI 10.1016/0022-247X(91)90245-U
- Kok-Keong Tan and Hong Kun Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 114 (1992), no. 2, 399–404. MR 1068133, DOI 10.1090/S0002-9939-1992-1068133-2
- Kok-Keong Tan and Hong Kun Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), no. 1, 25–36. MR 1147241, DOI 10.1017/S0004972700036972
- Hong Kun Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), no. 12, 1139–1146. MR 1111624, DOI 10.1016/0362-546X(91)90201-B
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 733-739
- MSC: Primary 47H17; Secondary 47H09, 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1203993-5
- MathSciNet review: 1203993