The degree of regularity of a quasiconformal mapping
HTML articles powered by AMS MathViewer
- by Pekka Koskela
- Proc. Amer. Math. Soc. 122 (1994), 769-772
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204381-8
- PDF | Request permission
Abstract:
T. Iwaniec has conjectured that the derivative of a locally $\alpha$-Hölder continuous quasiconformal mapping of ${\mathbb {R}^n}$ is locally integrable to any power $p < \frac {n}{{1 - \alpha }}$. We disprove this conjecture by producing examples of quasiconformal mappings of the plane that are uniformly Hölder continuous with exponent $\frac {1}{2} < \alpha < 1$ but whose derivatives are not locally integrable to the power $\frac {1}{{1 - \alpha }}$.References
- D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, and A. Marden (eds.), Holomorphic functions and moduli. I, Mathematical Sciences Research Institute Publications, vol. 10, Springer-Verlag, New York, 1988. MR 955804
- Kari Astala and Pekka Koskela, Quasiconformal mappings and global integrability of the derivative, J. Anal. Math. 57 (1991), 203–220. MR 1191747, DOI 10.1007/BF03041070
- B. V. Boyarskiĭ, Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. (N.S.) 43(85) (1957), 451–503 (Russian). MR 0106324
- K. J. Falconer and D. T. Marsh, Classification of quasi-circles by Hausdorff dimension, Nonlinearity 2 (1989), no. 3, 489–493. MR 1005062
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8 —, Open problems, Proc. Romanian-Finnish Seminar on Teichmuller Spaces and Quasiconformal Mappings, Romania, 1969, p. 306.
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- F. W. Gehring and E. Reich, Area distortion under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 388 (1966), 15. MR 0201635
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Tadeusz Iwaniec, $L^p$-theory of quasiregular mappings, Quasiconformal space mappings, Lecture Notes in Math., vol. 1508, Springer, Berlin, 1992, pp. 39–64. MR 1187088, DOI 10.1007/BFb0094237
- Pekka Koskela and Olli Martio, Removability theorems for solutions of degenerate elliptic partial differential equations, Ark. Mat. 31 (1993), no. 2, 339–353. MR 1263558, DOI 10.1007/BF02559490
- M. Jean McKemie, Quasiconformal groups with small dilatation, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 1, 95–118. MR 877584, DOI 10.5186/aasfm.1987.1223
- Stephen Semmes, Bi-Lipschitz mappings and strong $A_\infty$ weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 211–248. MR 1234732
- Pekka Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 89–94. MR 639966, DOI 10.5186/aasfm.1981.0624
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 769-772
- MSC: Primary 30C65; Secondary 30C62
- DOI: https://doi.org/10.1090/S0002-9939-1994-1204381-8
- MathSciNet review: 1204381