A comparison between Euler and Cesàro methods of summability
HTML articles powered by AMS MathViewer
- by B. Kuttner and M. R. Parameswaran
- Proc. Amer. Math. Soc. 122 (1994), 787-790
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205495-9
- PDF | Request permission
Abstract:
It is well known that there are sequences that are summable by every Cesàro method ${C_r}\;(r > 0)$ but are not summable by any Euler method ${E_p}\;(0 < p < 1)$. It is proved here that on the other hand there are sequences that are summable by every Euler method ${E_p}\;(0 < p < 1)$ but are not summable by any Cesaro method.References
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- Konrad Knopp, Über das Eulersche Summierungsverfahren, Math. Z. 15 (1922), no. 1, 226–253 (German). MR 1544570, DOI 10.1007/BF01494396
- M. R. Parameswaran, On a comparison between the Cesàro and Borel methods of summability, J. Indian Math. Soc. (N.S.) 22 (1958), 85–92. MR 130508
- Albert Wilansky and Karl Zeller, Summation of bounded divergent sequences, topological methods, Trans. Amer. Math. Soc. 78 (1955), 501–509. MR 67220, DOI 10.1090/S0002-9947-1955-0067220-7
- K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15, Springer-Verlag, Berlin-New York, 1970 (German). Zweite, erweiterte und verbesserte Auflage. MR 0264267, DOI 10.1007/978-3-642-88470-2
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 787-790
- MSC: Primary 40D20; Secondary 40G05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205495-9
- MathSciNet review: 1205495