Hölder-continuity of the solutions for operators which are a sum of squares of vector fields plus a potential
HTML articles powered by AMS MathViewer
- by G. Citti and G. Di Fazio
- Proc. Amer. Math. Soc. 122 (1994), 741-750
- DOI: https://doi.org/10.1090/S0002-9939-1994-1207534-8
- PDF | Request permission
Abstract:
In this paper we study the local Hölder-regularity of weak solutions to $\mathcal {L}u + Vu = 0$ where $\mathcal {L}$ is a Hörmander hypoelliptic operator and the potential V belongs to a new class of functions which is the natural extension of Morrey spaces to this situation. We improve a recent result of Citti, Garofalo, and Lanconelli.References
- M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, DOI 10.1002/cpa.3160350206 G. Citti, N. Garofalo, and E. Lanconelli, Harnack’s inequality for sum of squares of vector fields plus a potential, preprint.
- F. Chiarenza, E. Fabes, and N. Garofalo, Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), no. 3, 415–425. MR 857933, DOI 10.1090/S0002-9939-1986-0857933-4
- Giuseppe Di Fazio, Hölder-continuity of solutions for some Schrödinger equations, Rend. Sem. Mat. Univ. Padova 79 (1988), 173–183. MR 964029
- G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373–376. MR 315267, DOI 10.1090/S0002-9904-1973-13171-4
- A. M. Hinz and H. Kalf, Subsolution estimates and Harnack’s inequality for Schrödinger operators, J. Reine Angew. Math. 404 (1990), 118–134. MR 1037432
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Antonio Sánchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), no. 1, 143–160. MR 762360, DOI 10.1007/BF01388721
- Christian G. Simader, An elementary proof of Harnack’s inequality for Schrödinger operators and related topics, Math. Z. 203 (1990), no. 1, 129–152. MR 1030712, DOI 10.1007/BF02570727
- Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189–258 (French). MR 192177, DOI 10.5802/aif.204
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 741-750
- MSC: Primary 35D10; Secondary 35B65, 35H05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1207534-8
- MathSciNet review: 1207534