Continuity of derivations on $H^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by A. R. Villena
- Proc. Amer. Math. Soc. 122 (1994), 821-826
- DOI: https://doi.org/10.1090/S0002-9939-1994-1207543-9
- PDF | Request permission
Abstract:
We prove that the separating subspace for a derivation on a nonassociative ${H^ \ast }$-algebra is contained in the annihilator of the algebra. In particular, derivations on nonassociative ${H^\ast }$-algebras with zero annihilator are continuous.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364â386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- V. K. Balachandran, Real $L^{\ast }$-algebras, Indian J. Pure Appl. Math. 3 (1972), no. 6, 1224â1246. MR 347920
- V. K. Balachandran and N. Swaminathan, Real $H^\ast$-algebras, J. Funct. Anal. 65 (1986), no. 1, 64â75. MR 819174, DOI 10.1016/0022-1236(86)90016-9
- M. Cabrera, J. MartĂnez, and A. RodrĂguez, Nonassociative real $H^*$-algebras, Publ. Mat. 32 (1988), no. 2, 267â274. MR 975901, DOI 10.5565/PUBLMAT_{3}2288_{1}0
- M. Cabrera GarcĂa, J. MartĂnez-Moreno, and Ă. RodrĂguez-Palacios, MalâČcev $H^*$-algebras, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 463â471. MR 932670, DOI 10.1017/S0305004100065063
- M. Cabrera, J. Martinez, and A. Rodriguez, A note on real $H^*$-algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 131â132. MR 966147, DOI 10.1017/S0305004100001432
- M. Cabrera, J. Martinez, and A. Rodriguez, Structurable $H^\ast$-algebras, J. Algebra 147 (1992), no. 1, 19â62. MR 1154673, DOI 10.1016/0021-8693(92)90251-G
- M. Cabrera GarcĂa and Ă. RodrĂguez-Palacios, Extended centroid and central closure of semiprime normed algebras. A first approach, Comm. Algebra 18 (1990), no. 7, 2293â2326. MR 1063136, DOI 10.1080/00927879008824022
- JosĂ© Antonio Cuenca Mira, GarcĂa MartĂn Amable, and CĂĄndido MartĂn GonzĂĄlez, Structure theory for $L^*$-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 361â365. MR 1027788, DOI 10.1017/S0305004100068626
- JosĂ© Antonio Cuenca Mira and Ăngel RodrĂguez-Palacios, Structure theory for noncommutative Jordan $H^\ast$-algebras, J. Algebra 106 (1987), no. 1, 1â14. MR 878465, DOI 10.1016/0021-8693(87)90018-4 â, Isomorphisms of ${H^\ast }$-algebras, Math. Proc. Cambridge Philos. Soc. 97 (1985), 93-99.
- Theodore S. Erickson, Wallace S. Martindale 3rd, and J. Marshall Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49â63. MR 382379, DOI 10.2140/pjm.1975.60.49 P. de la Harpe, Classification des ${L^\ast }$-algebras semi-simples rĂ©elles sĂ©parables, C. R. Acad. Sci. Paris Ser. I Math. 272 (1971), 1559-1561.
- Pierre de la Harpe, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Lecture Notes in Mathematics, Vol. 285, Springer-Verlag, Berlin-New York, 1972. MR 0476820, DOI 10.1007/BFb0071306
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067â1073. MR 239419, DOI 10.2307/2373290
- Irving Kaplansky, Dual rings, Ann. of Math. (2) 49 (1948), 689â701. MR 25452, DOI 10.2307/1969052 PĂ©rez de GuzmĂĄn, Structure theorem for alternative ${H^\ast }$-algebras, Math. Proc. Cambridge Philos. Soc. 94 (1983), 437-446.
- Ăngel RodrĂguez-Palacios, Jordan axioms for $C^*$-algebras, Manuscripta Math. 61 (1988), no. 3, 297â314. MR 949820, DOI 10.1007/BF01258441
- John R. Schue, Hilbert space methods in the theory of Lie algebras, Trans. Amer. Math. Soc. 95 (1960), 69â80. MR 117575, DOI 10.1090/S0002-9947-1960-0117575-1 â, Cartan decomposition for ${L^\ast }$-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349.
- Ignacio Unsain, Classification of the simple separable real $L^{^{\ast } }$-algebras, J. Differential Geometry 7 (1972), 423â451. MR 325721
- Armando R. Villena Muñoz, Continuity of derivations on a complete normed alternative algebra, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), no. 2, 99â106. MR 1105482
- C. Viola Devapakkiam, Hilbert space methods in the theory of Jordan algebras. I, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 293â300. MR 380430, DOI 10.1017/S0305004100051690
- C. Viola Devapakkiam and P. S. Rema, Hilbert space methods in the theory of Jordan algebras. II, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 307â319. MR 404360, DOI 10.1017/S0305004100052300
- M. A. Youngson, Hermitian operators on Banach Jordan algebras, Proc. Edinburgh Math. Soc. (2) 22 (1979), no. 2, 169â180. MR 549462, DOI 10.1017/S001309150001628X
- Borut Zalar, Continuity of derivations on MalâČcev $H^*$-algebras, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 455â459. MR 1120480, DOI 10.1017/S0305004100070523
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 821-826
- MSC: Primary 46K70; Secondary 17A36, 46K15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1207543-9
- MathSciNet review: 1207543