Amenable actions and weak containment of certain representations of discrete groups
HTML articles powered by AMS MathViewer
- by M. Gabriella Kuhn
- Proc. Amer. Math. Soc. 122 (1994), 751-757
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209424-3
- PDF | Request permission
Abstract:
We consider a countable discrete group $\Gamma$ acting ergodically on a standard Borel space S with quasi-invariant measure $\mu$. Let $\pi$ be a unitary representation of $\Gamma$ on ${L^2}(S,d\mu ,\mathcal {H})$ "nicely" related with S. We prove that if $\Gamma$ acts amenably on S then $\pi$ is weakly contained in the regular representation.References
- S. Adams, Boundary amenability for hyperbolic groups and an application to smooth dynamic of simple groups, preprint.
- A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. 27 (1966), 87–104. MR 195982, DOI 10.4064/sm-27-2-87-104
- Gabriella Kuhn and Tim Steger, More irreducible boundary representations of free groups, Duke Math. J. 82 (1996), no. 2, 381–436. MR 1387235, DOI 10.1215/S0012-7094-96-08218-6
- Claudio Nebbia, Amenability and Kunze-Stein property for groups acting on a tree, Pacific J. Math. 135 (1988), no. 2, 371–380. MR 968619
- John C. Quigg and J. Spielberg, Regularity and hyporegularity in $C^*$-dynamical systems, Houston J. Math. 18 (1992), no. 1, 139–152. MR 1159445
- Robert J. Zimmer, On the von Neumann algebra of an ergodic group action, Proc. Amer. Math. Soc. 66 (1977), no. 2, 289–293. MR 460599, DOI 10.1090/S0002-9939-1977-0460599-3
- Robert J. Zimmer, Hyperfinite factors and amenable ergodic actions, Invent. Math. 41 (1977), no. 1, 23–31. MR 470692, DOI 10.1007/BF01390162 —, Ergodic theory and semisimple groups, Birkhäuser, Boston, MA, 1984.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 751-757
- MSC: Primary 43A07; Secondary 22D10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209424-3
- MathSciNet review: 1209424