Fast spectrally-accurate solution of variable-coefficient elliptic problems
HTML articles powered by AMS MathViewer
- by John Strain
- Proc. Amer. Math. Soc. 122 (1994), 843-850
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216825-6
- PDF | Request permission
Abstract:
A simple, efficient, spectrally-accurate numerical method for solving variable-coefficient elliptic partial differential equations in periodic geometry is described. Numerical results show that the method is efficient and accurate even for difficult problems including convection-diffusion equations. Generalizations and applications to phase field models of crystal growth are discussed.References
- William L. Briggs, A multigrid tutorial, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. MR 960880
- G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A (3) 39 (1989), no. 11, 5887–5896. MR 998924, DOI 10.1103/PhysRevA.39.5887
- Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR 917480, DOI 10.1007/978-3-642-84108-8
- Paul Concus and Gene H. Golub, Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations, SIAM J. Numer. Anal. 10 (1973), 1103–1120. MR 341890, DOI 10.1137/0710092
- M. Deville and E. Mund, Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning, J. Comput. Phys. 60 (1985), no. 3, 517–533. MR 814440, DOI 10.1016/0021-9991(85)90034-8
- Roland W. Freund and Noël M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991), no. 3, 315–339. MR 1137197, DOI 10.1007/BF01385726
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0 H. Guillard and J. A. Désidéri, Iterative methods with spectral preconditioning for elliptic equations, Spectral and High Order Methods for Partial Differential Equations: Proceedings of the ICOSAHOM ’89 Conference (Villa Olmo, Como, Italy, June 26-29, 1989) (C. Canuto and A. Quarteroni, eds.), Elsevier, Amsterdam, 1990.
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1991. Stiff and differential-algebraic problems. MR 1111480, DOI 10.1007/978-3-662-09947-6 W. Proskurowski and O. Widlund, On the numerical solution of Helmholtz’s equation by the capacitance matrix method, Math. Comp. 32 (1978), 103-120.
- Vladimir Rokhlin, Application of volume integrals to the solution of partial differential equations, Comput. Math. Appl. 11 (1985), no. 7-8, 667–679. Computational ocean acoustics (New Haven, Conn., 1984). MR 809600, DOI 10.1016/0898-1221(85)90163-4
- V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86 (1990), no. 2, 414–439. MR 1036660, DOI 10.1016/0021-9991(90)90107-C
- Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 856–869. MR 848568, DOI 10.1137/0907058
- H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 2, 631–644. MR 1149111, DOI 10.1137/0913035
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 843-850
- MSC: Primary 65N35
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216825-6
- MathSciNet review: 1216825