COUNTABLE PARACOMPACTNESS OF Σ-PRODUCTS

LECHENG YANG

(Communicated by Franklin D. Tall)

Abstract. It is known that Σ-products of compact spaces always are countably paracompact but not necessarily normal. In the present paper it is proved that a Σ-product of paracompact σ-spaces is normal if and only if it is countably paracompact.

1. Introduction

The equivalence of normality and countable paracompactness in Cartesian products has been investigated by many authors [5, 8, 9, 17, 22] so that this topic constitutes a very interesting part in the theory of product spaces [7, 14]. In this paper the equivalence of normality and countable paracompactness will be considered for Σ-products.

The concept of Σ-products was introduced by Corson [2] who proved that Σ-products of complete metric spaces are normal. In Gul'ko [4] and Rudin [15] the following is shown:

(i) A Σ-product of metric spaces is normal.

This answers affirmatively a long outstanding question raised by Corson [2]. Kombarov [8] later generalized (i) by obtaining the following result:

(ii) A Σ-product of paracompact p-spaces is (collectionwise) normal if and only if it has countable tightness.

In connection with the above results, the following Questions 1 and 2 are considered by Yajima [18] and Kodama, respectively.

Question 1. Is a Σ-product of paracompact σ-spaces normal if it has countable tightness?

Question 2. Is a Σ-product of Lašnev spaces normal?

Question 1 has been answered positively. In fact Yajima [18] even proved

(iii) A Σ-product of paracompact Σ-spaces is (collectionwise) normal if it has countable tightness.

Since paracompact p-spaces are Σ-spaces, (iii) is also a generalization of the "if" part of (ii). However, the countable tightness is no longer a necessary condition for a Σ-product of paracompact Σ-spaces to be normal, because there

Received by the editors March 3, 1993.
1991 Mathematics Subject Classification. Primary 54B10, 54D10, 54D18.
Key words and phrases. Σ-product, σ-space, countably paracompact, normal.
exists a collectionwise normal Σ-product of M_1-spaces which has no countable tightness [18]. Moreover, since there exists a nonnormal Σ-product of M_1-spaces [18], in Question 1 the assumption of countable tightness cannot be dropped. On the other hand, Rudin [16] proved that any Σ-product of metric spaces is shrinking and hence countably paracompact. It is also known from Yajima [19] that any normal Σ-product of σ-spaces is countably paracompact.

The main purpose of this paper is to establish the equivalence of normality and countable paracompactness of Σ-products of paracompact σ-spaces. Namely we prove the following theorem.

Theorem 1. A Σ-product of paracompact σ-spaces is normal if and only if it is countably paracompact.

In the rest of the paper, we also consider the subshrinking property of $X \times \kappa$, where X is a semistratifiable space and κ an uncountable regular cardinal with the usual order topology. The subshrinking property was introduced by Yajima [20] which is important for the study of shrinking property (see Yajima [20] and Hoshina [6]). Yajima [21] recently proved that $X \times \kappa$ is subshrinking for any σ-space X, and he asked whether $X \times \kappa$ is subshrinking for a semistratifiable space X. We shall prove

Theorem 2. Let X be a semistratifiable space with $\chi(X) < \kappa$. Then $X \times \kappa$ is subshrinking.

All spaces considered here are assumed to be regular T_1. The set of natural numbers is denoted by N and natural numbers are denoted by i, j, k, and n. κ always denotes an uncountable regular cardinal with the usual order topology.

2. Proof of Theorem 1

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be the Cartesian product of spaces X_{λ}, $\lambda \in \Lambda$, and let $s = (s_\lambda)_{\lambda \in \Lambda}$ be a fixed point of X. The subspace $\Sigma = \{ x \in X : x_\lambda = s_\lambda \text{ for all but countably many } \lambda \in \Lambda \}$ of X is called a Σ-product of spaces X_λ, $\lambda \in \Lambda$. Such a point $s \in \Sigma$ is called the base point of Σ, which is often omitted.

Let X be a Σ-product of spaces X_λ, $\lambda \in \Lambda$, with a base point $(s_\lambda)_{\lambda \in \Lambda}$. For a point $x \in X$, denote by $\text{Supp}(x)$ the set $\{ \lambda \in \Lambda : x_\lambda \neq s_\lambda \}$. Let Δ be an index set such that for each $\xi \in \Delta$, R_ξ is a subset of Λ. Then we denote by X_{ξ} the Cartesian product $\prod_{\lambda \in R_\xi} X_{\lambda}$ and by p_ξ the projection of X onto X_{ξ} for each $\xi \in \Delta$.

Let $\xi = (\alpha_{ij})_{i,j \leq n}$ be an $n \times n$ matrix. By ξ_k we denote the $k \times k$ matrix $(\alpha_{ij})_{i,j \leq k}$ for $1 \leq k \leq n$. In particular, ξ_{n-1} is often abbreviated as ξ_- and ξ_0 denotes the empty set \emptyset.

A space is called a σ-space if it has a σ-locally finite net [13]. Note that Lašnev spaces (i.e., closed images of metric spaces) are M_1, and M_1-spaces are paracompact σ [13]. It is well known that the countable product of paracompact σ-spaces (\Sigma-spaces) is paracompact σ (Σ).

The following two lemmas are useful to prove Theorem 1.

Lemma 1 [5, Lemma 2.1]. Let X be a countably paracompact space and let E and F be a pair of disjoint subsets. Suppose that F is closed and there exists open sets U_n, $n \in \mathbb{N}$, such that $E \subseteq \bigcap_{n \in \mathbb{N}} U_n$ and $(\bigcap_{n \in \mathbb{N}} U_n) \cap F = \emptyset$. Then E and F are separated by open sets.
Lemma 2 [11, Theorem 1]. Let X be a σ-space. Then there exists a sequence
\begin{align*}
\mathcal{F}_n &= \{ F(\alpha_1, \ldots, \alpha_n) : \alpha_1, \ldots, \alpha_n \in \Omega \} \text{ for each } n \in \mathbb{N}, \\
F(\alpha_1, \ldots, \alpha_n) &= \bigcup\{ F(\alpha_1, \ldots, \alpha_n, \alpha) : \alpha \in \Omega \} \text{ for each } \alpha_1, \ldots, \alpha_n \in \Omega, \\
\text{(c) For each } x \in X, \text{ there exists a sequence } \alpha_1, \alpha_2, \ldots \in \Omega \text{ such that } x \in \\
\bigcap_{n \in \mathbb{N}} F(\alpha_1, \ldots, \alpha_n) \text{ and each open nbhd of } x \text{ contains some } F(\alpha_1, \ldots, \alpha_n).
\end{align*}

The above sequence \(\{ \mathcal{F}_n : n \in \mathbb{N} \} \) is called a spectral σ-net of X and the sequence \(\{ F(\alpha_1, \ldots, \alpha_n) : n \in \mathbb{N} \} \) in (c) is called a local σ-net of X at x.

Our proof of Theorem 1 is based on the idea in Yajima [18, 20] and we shall use the following fact: a space X is normal if and only if for every pair A, B of disjoint closed subsets of X there exists a σ-locally finite open cover \mathcal{U} of X such that either $\bigcup \mathcal{U} \cap A = \emptyset$ or $\bigcup \mathcal{U} \cap B = \emptyset$ for every $U \in \mathcal{U}$.

Proof of Theorem 1. Let X be a Σ-product of paracompact σ-spaces X_λ, $\lambda \in \Lambda$, with a base point $s = (s_\lambda)_{\lambda \in \Lambda} \in X$, and suppose X is countably paracompact. To prove that X is normal, let A and B be a pair of disjoint closed subsets of X; we shall find a σ-locally finite open cover \mathcal{G} of X such that either $\bigcup \mathcal{G} \cap A = \emptyset$ or $\bigcup \mathcal{G} \cap B = \emptyset$ for every $U \in \mathcal{G}$. Let $\Delta_0 = \{ \xi_0 \}$, where $\xi_0 = (\emptyset)$, and take an arbitrary nonempty countable subset $R_0 \subset \Lambda$.

Now, for each $n \in \mathbb{N}$ we construct a collection \mathcal{G}_n of open sets in X and an index set Δ_n of $n \times n$ matrices such that for each $\xi \in \Delta_n$, R_ξ, $\Omega(\xi)$, $E(\xi)$, $H(\xi)$, and x_ξ are given satisfying the following conditions:

1. Each \mathcal{G}_n is locally finite in X such that for each $G \in \mathcal{G}_n$, $\bigcup G$ is disjoint from A or B.
2. For each $\xi \in \Delta_n$, \(\{ F(\alpha_1, \ldots, \alpha_k) : \alpha_1, \ldots, \alpha_k \in \Omega(\xi) \} \), $k \in \mathbb{N}$, is a spectral σ-net of X_ξ.
3. For each $\xi = (\alpha_{ij})_{j \leq n} \in \Delta_n$,
 \(\xi_- \in \Delta_{n-1} \), $\alpha_{in} \in \Omega(\xi_-)$ for $1 \leq i \leq n - 1$, and $\alpha_{nj} \in \Omega(\xi_-)$ for $1 \leq j \leq n$, where for $n = 1$, $\alpha_{11} \in \Omega(\xi_0)$;
 \(E(\xi_0) = \bigcap_{i=1}^n p_{\xi_0,i}^{-1} (F(\alpha_{i1}, \ldots, \alpha_{in})) \).
4. $\{ H(\xi) : \xi \in \Delta_n \}$ is a locally finite collection of open sets of X with $H(\xi) \supset E(\xi)$ for each $\xi \in \Delta_n$.
5. For each $\xi \in \Delta_{n-1}$, $E(\xi)$ is covered by $\mathcal{G}_n \cup \{ E(\eta) : \eta \in \Delta_n \}$ with $\eta_- = \xi$, and X is covered by $\mathcal{G}_1 \cup \{ E(\eta) : \eta \in \Delta_1 \}$.
6. For each $\xi \in \Delta_n$,
 \(x_\xi \in A \cap E(\xi) \) if n is odd and $x_\xi \in B \cap E(\xi)$ if n is even;
 \(R_\xi = R_\xi_- \cup \text{Supp}(x_\xi) \).

Assume that the above construction has already been performed for no greater than n, where, without loss of generality, we may assume that n is odd. Take a $\xi \in \Delta_n$. Put
\[M_\xi = \{ \eta = (\alpha_{ij})_{i,j \leq n+1} : \eta_- = \xi, \alpha_{i,n+1} \in \Omega(\xi_{i-1}) \text{ for } 1 \leq i \leq n \text{ and } \alpha_{n+1,j} \in \Omega(\xi) \text{ for } 1 \leq j \leq n + 1 \}. \]

For each $\eta = (\alpha_{ij})_{i,j \leq n+1} \in M_\xi$, we define
\[E(\eta) = \bigcap_{i=1}^{n+1} p_{\xi_{i-1}}^{-1} (F(\alpha_{i,1}, \ldots, \alpha_{i,n+1})). \]
Moreover, we put
\[\Delta_\xi = \{ \eta \in M_\xi : B \cap E(\eta) \neq \emptyset \}. \]

It is easily seen that \(\{ p_\xi(E(\eta)) : \eta \in M_\xi \} \) is a locally finite collection of closed sets of \(X_\xi \) with \(p_\xi^{-1}p_\xi(E(\eta)) = E(\eta) \) for each \(\eta \in \Delta_\xi \). And so if we define \(S(\xi) \) by
\[S(\xi) = \bigcup \{ E(\eta) : \eta \in M_\xi \setminus \Delta_\xi \}, \]
then \(p_\xi(S(\xi)) \) is closed in \(X_\xi \) with \(S(\xi) = p_\xi^{-1}p_\xi(S(\xi)) \). Note that \(S(\xi) \subset E(\xi) \cap (X \setminus B) \). It follows from the perfect normality of \(X_\xi \) that
\[S(\xi) = \bigcap_{n=1}^{\infty} p_\xi^{-1}(V_n) \subset \bigcap_{n=1}^{\infty} \overline{p_\xi^{-1}(V_n)} \subset X \setminus B \]
for some countably many open sets \(V_n, n \in \mathbb{N} \), in \(X_\xi \). Since \(X \) is countably paracompact, Lemma 1 implies that there exists an open set \(G_\xi \) in \(X_\xi \) contained in \(H(\xi) \) such that
\[S(\xi) \subset G_\xi \subset \overline{G_\xi} \subset X \setminus B. \]

Here, keeping \(\xi \in \Delta_\xi \), we let
\[\mathcal{G}_{n+1} = \{ G_\xi : \xi \in \Delta_n \} \quad \text{and} \quad \Delta_{n+1} = \bigcup_{\xi \in \Delta_n} \Delta_\xi. \]

To define \(H(\eta) \) for \(\eta \in \Delta_\xi \), note, as mentioned above, that \(\{ p_\xi(E(\eta)) : \eta \in M_\xi \} \) is a locally finite collection of closed sets of \(X_\xi \) with \(p_\xi^{-1}p_\xi(E(\eta)) = E(\eta) \subset E(\xi) \) for \(\eta \in M_\xi \). By the paracompactness of \(X_\xi \), there exists a locally finite collection \(\{ W(\eta) : \eta \in M_\xi \} \) of open sets of \(X_\xi \) such that \(p_\xi(E(\eta)) \subset W(\eta) \) and thus \(E(\eta) \subset p_\xi^{-1}(W(\eta)) \). Let \(H(\eta) = p_\xi^{-1}(W(\eta)) \cap H(\xi) \). It follows from the inductive assumption (4) that \(\{ H(\eta) : \eta \in \Delta_{n+1} \} \) is locally finite with \(H(\eta) \supset E(\eta) \). For each \(\eta \in \Delta_{n+1}, \) we can choose some \(x_\eta \in B \cap E(\eta) \). Let \(R_\eta = R_{\eta-} \cup \text{Supp}(x_\eta) \). Since \(X_\eta \) is a \(\sigma \)-space it follows from Lemma 2 that there exists a spectral \(\sigma \)-net
\[\{ F(\alpha_1 \cdots \alpha_k) : \alpha_1, \ldots, \alpha_k \in \Omega(\eta) \}, \quad k \in \mathbb{N}, \]
of \(X_\eta \) for each \(\eta \in \Delta_{n+1} \). Then the conditions (1)–(6) are satisfied for \(n+1 \). Here we check only (5). Pick any \(\xi = (\alpha_{ij})_{i,j \leq n} \in \Delta_n \). Then
\[F(\alpha_{i1} \cdots \alpha_{in}) = \bigcup \{ F(\alpha_{i1} \cdots \alpha_{i,n+1}) : \alpha_{i,n+1} \in \Omega(\xi_{i-1}) \} \]
for \(i = 1, \ldots, n \), and
\[X = \bigcup \{ p_\xi^{-1}(F(\alpha_{n+1,1} \cdots \alpha_{n+1,n+1})) : \alpha_{n+1,j} \in \Omega(\xi) \text{ for } j = 1, \ldots, n+1 \}. \]

It follows that
\[E(\xi) = \bigcup \{ E(\eta) : \eta \in M_\xi \} \subset \bigcup \mathcal{G}_{n+1} \cup \bigcup \{ E(\eta) : \eta \in \Delta_\xi \}. \]

We now set \(\mathcal{G} = \bigcup_{n=1}^{\infty} \mathcal{G}_n \). By (1), \(\mathcal{G} \) is a \(\sigma \)-locally finite collection of open sets of \(X \) such that for \(G \in \mathcal{G} \), \(\overline{G} \) misses \(A \) or \(B \). To complete the proof, it suffices to show that \(\mathcal{G} \) covers \(X \). Assume the contrary and pick some \(x \in X \setminus \bigcup \mathcal{G} \). By (2) and (5), we can inductively choose a sequence \(\{ \alpha_{ij} : i, j \geq 1 \} \) such that for each \(n \geq 1, \xi(n) = (\alpha_{ij})_{i,j \leq n} \in \Delta_n \) and \(\{ F(\alpha_{n1} \cdots \alpha_{nk}) : k \in \mathbb{N} \} \)
is a local \(\sigma \)-net of \(X_{\xi(n-1)} \) at point \(p_{\xi(n-1)}(x) \), where \(\alpha_{nk} \in \Omega(\xi(n-1)) \) and \(\xi(0) = \xi_0 \). Now fix \(m \geq 1 \). If \(n > m \), then
\[
x_{\xi(n)} \in E(\xi(n)) \subset p_{\xi(m)}^{-1}(F(\alpha_{m+1,1} \cdots \alpha_{m+1,n})).
\]
We thus have \(p_{\xi(m)}(x_{\xi(n)}) \in F(\alpha_{m+1,1} \cdots \alpha_{m+1,n}) \) for each \(n > m \). Since \(\{ F(\alpha_{m+1,1} \cdots \alpha_{m+1,k}) : k \in \mathbb{N} \} \) is a local \(\sigma \)-net of \(X_{\xi(m)} \) at point \(p_{\xi(m)}(x) \), the sequence \(\{ p_{\xi(n)}(x_{\xi(n)}) \}_{n > m} \) converges to \(p_{\xi(m)}(x) \). Define a point \(y = (y_\lambda)_{\lambda \in \Lambda} \) in \(X \) by letting \(y_\lambda = x_\lambda \) if \(\lambda \in \bigcup_{n=1}^{\infty} R_{\xi(n)} \) and \(y_\lambda = s_\lambda \) otherwise. Then one can prove that the sequence \(\{ x_{\xi(n)} \}_{n \in \mathbb{N}} \) converges to \(y \), and thus \(y \in A \cap B \). This is a contradiction. The proof of Theorem 1 is complete.

Question 2 is still open. By Theorem 1 we now have

Corollary 1. A \(\Sigma \)-product of Lašnev \((M_1-)\) spaces is normal if and only if it is countably paracompact.

By Theorem 1 and [20, Corollary 1] we also have

Corollary 2. The following are equivalent for a \(\Sigma \)-product \(X \) of paracompact \(\sigma \)-spaces.

1. \(X \) is collectionwise normal.
2. \(X \) is shrinking.
3. \(X \) is normal.
4. \(X \) is countably paracompact.

It is not possible to replace \(\sigma \)-spaces by \(\Sigma \)-spaces in Theorem 1. Since, as pointed out in the abstract, \(\Sigma \)-products of compact spaces are always countably paracompact but not necessarily normal [4].

3. Proof of Theorem 2

A space is said to be semistratifiable [3] if there exists a function \(g \) of \(X \times \mathbb{N} \) into the topology of \(X \) satisfying

(i) \(\bigcap_{n \in \mathbb{N}} g(x, n) = \{ x \} \) for each \(x \in X \);
(ii) if \(\{ x_n \} \) is a sequence of points in \(X \) with \(x \in \bigcap_{n \in \mathbb{N}} g(x_n, n) \) for some \(x \in X \), then \(\{ x_n \} \) converges to \(x \).

A space \(X \) is said to be shrinking if for every open cover \(\{ G_\gamma : \gamma \in \Gamma \} \) of \(X \) there exists a closed cover \(\{ F_\gamma : \gamma \in \Gamma \} \) of \(X \) such that \(F_\gamma \subset G_\gamma \) for each \(\gamma \in \Gamma \).

If the closed cover can be weakly chosen as a closed cover \(\mathcal{F} = \{ F_\gamma, n : \gamma \in \Gamma \} \) and \(n \in \mathbb{N} \) with \(F_\gamma, n \subset G_\gamma \) for each \(\gamma \in \Gamma \) and \(n \in \mathbb{N} \), then the space is said to be subshrinking. Such a cover \(\mathcal{F} \) is called a subshrinking of \(\{ G_\gamma : \gamma \in \Gamma \} \).

It follows from Bešlagić [1] that a space is shrinking if and only if it is normal and subshrinking. Note that subparacompact spaces are subshrinking.

Proof of Theorem 2. Let \(X \) be a semistratifiable space and \(\mathcal{G} = \{ G_\gamma : \gamma \in \Gamma \} \) an open cover of \(X \times \kappa \). We shall find a subshrinking for \(\mathcal{G} \).

For a set \(F \subset X \), set
\[
\mathcal{W}(F) = \{ W : W \text{ is open in } \kappa \text{ such that } F \times W \subset G_\gamma \text{ for some } \gamma \in \Gamma \}
\]
and
\[
\mathcal{V} = \{ V : V \text{ is open in } X \text{ such that } \kappa = \bigcup \mathcal{W}(V) \}.
\]
Now for each \(n \in \mathbb{N} \) we construct inductively two \(\sigma \)-locally finite collections \(\mathcal{G}_n \) and \(\mathcal{F}_n \) of closed sets of \(X \) satisfying the following conditions (1)-(3):

(1) \(\mathcal{F}_{n+1} \) can be expressed as \(\mathcal{F}_{n+1} = \bigcup \{ \mathcal{F}_F \in \mathcal{F}_n \} \).

(2) For each \(C \in \mathcal{G}_n \), \(\kappa = \bigcup \mathcal{W}(C) \).

(3) For each \(F \in \mathcal{F}_n \),
 (a) \(F \subset g(x_F, n) \) for some \(x_F \in X \setminus \bigcup \mathcal{V} \);
 (b) \(F \) is covered by \(\mathcal{G}_{n+1} \cup \mathcal{F}_F \); and \(X \) is covered by \(\mathcal{G}_1 \cup \mathcal{F} \).

Assume \(n \in \mathbb{N} \), and \(\mathcal{G}_i \) and \(\mathcal{F}_i \) for \(i \leq n \) have already been defined satisfying the conditions. Take an \(F \in \mathcal{F}_n \) and fix it. Put

\[
\mathcal{W} = \{ F \cap V : V \in \mathcal{V} \} \cup \{ F \cap g(x, n + 1) : x \in F \setminus \bigcup \mathcal{V} \}.
\]

By the subparacompactness of \(X \), there exists a \(\sigma \)-locally finite closed cover \(\mathcal{F} \) of \(F \) refining \(\mathcal{W} \). Let \(\mathcal{G}_F = \{ F \in \mathcal{F} : F \subset V \) for some \(V \in \mathcal{V} \} \) and \(\mathcal{F}_F = \mathcal{F} \setminus \mathcal{G}_F \). Here running \(F \in \mathcal{F}_n \) we put

\[
\mathcal{G}_{n+1} = \bigcup \{ \mathcal{G}_F : F \in \mathcal{F}_n \} \quad \text{and} \quad \mathcal{F}_{n+1} = \bigcup \{ \mathcal{F}_F : F \in \mathcal{F}_n \}.
\]

Then both \(\mathcal{G}_{n+1} \) and \(\mathcal{F}_{n+1} \) are locally finite satisfying conditions (1)-(3).

Claim. \(\mathcal{G} = \bigcup_{n=1}^{\infty} \mathcal{G}_n \) covers \(X \).

Assume the contrary and pick some \(x \in X \setminus \bigcup \mathcal{G} \). Then one can easily find a sequence \(\{ x_n \}_{n \in \mathbb{N}} \) in \(X \setminus \bigcup \mathcal{V} \) such that \(x \in g(x_n, n) \) for each \(n \in \mathbb{N} \). It follows from the definition of semistratifiable spaces above Definition 3 that the sequence \(\{ x_n \}_{n \in \mathbb{N}} \) converges to \(x \). Since \(\chi(X) < \kappa \), we may take a \(\lambda < \kappa \) and find a nbd base \(\{ V(x_n, \alpha) : \alpha < \lambda \} \) for \(x_n \), \(n \in \mathbb{N} \). By the definition of \(x_n \), for each \(n \in \mathbb{N} \) there exists a point

\[
\xi(n, \alpha) \in \kappa \setminus \bigcup \mathcal{W}(V(x_n, \alpha))
\]

for each \(\alpha < \lambda \). Let \(\xi(n) \) be a cluster point of the net \(\{ \xi(n, \alpha) : \alpha < \kappa \} \), \(n \in \mathbb{N} \), and let \(\xi \) be a cluster point of the sequence \(\{ \xi(n) \}_{n \in \mathbb{N}} \). Then \((x, \xi) \in G_\gamma \) for some \(\gamma \in \Gamma \). It is not hard to find an \(n \), an \(\alpha < \lambda \), and a nbd of \(O_\xi \) of \(\xi \) such that

\[
V(x_n, \alpha) \times O_\xi \subset G_\gamma.
\]

It follows that \(\xi(n, \alpha) \in \bigcup \mathcal{W}(V(x_n, \alpha)) \).

Now decompose \(\mathcal{G} \) as \(\mathcal{G} = \bigcup_{n=1}^{\infty} \mathcal{G}_n \) so that \(\mathcal{G}_n \) is locally finite. Pick a \(C \in \mathcal{G} \) and fix it. For each \(\alpha \in \kappa \), there exists an \(f(\alpha) < \alpha \) such that \(C \times (f(\alpha), \alpha] \subset G_\gamma \) for some \(\gamma \in \Gamma \); let \(\gamma(\alpha, C) \) denote this \(\gamma \). By the Pressing Down Lemma, there exists a \(\beta \in \kappa \) and a stationary set \(S \subset \kappa \) such that \(f(\alpha) = \beta \) for all \(\alpha \in S \). Therefore we have \(C \times (\beta, \alpha] \subset G_{\gamma(\alpha, C)} \) for all \(\alpha \in S \). Without loss of generality we can assume that either all \(\gamma(\alpha, C) \), \(\alpha \in S \), are the same or different. If all \(\gamma(\alpha, C) \), \(\alpha \in S \), are the same, we may put \(\gamma(C) = \gamma(\alpha, C) \) for all \(\alpha \in S \). We let \(\beta_C \) denote the chosen \(\beta \) and index the chosen stationary set \(S \) as \(S = \{ \alpha(C, \mu) : \mu \in \kappa \} \). Here keeping \(C \in \mathcal{G} \), decompose \(\mathcal{G}_n \) for each \(n \in \mathbb{N} \) as

\[
\mathcal{G}_n(1) = \{ C \in \mathcal{G}_n : \text{all } \gamma(\alpha(C, \mu), C), \mu < \kappa, \text{ are the same} \}.
\]
and $E'_n(2) = E'_n \setminus E'_n(1)$. We now put

$$H_{n\gamma} = \left(\bigcup \{ C \times (\beta C, \kappa) : C \in E'_n(1) \text{ with } \gamma(C) = \gamma \} \right) \cup \left(\bigcup \{ C \times (\beta C, \alpha(C, \mu)) : C \in E'_n(2) \text{ and } \mu < \kappa \right)$$

with $\gamma(\alpha(C, \mu), C) = \gamma$)

for each $\gamma \in \Gamma$ and $n \geq 1$. Then $H_{n\gamma}$ is a closed set in $X \times \kappa$ with $H_{n\gamma} \subset G_\gamma$ for each $\gamma \in \Gamma$ and $n \geq 1$.

Moreover, for each $C \in E$, since the subspace $C \times [0, \beta C]$ is subparacompact, there exists a closed cover $\{Z_{n,C,\gamma} : n \in \mathbb{N} \text{ and } \gamma \in \Gamma\}$ of it such that $Z_{n,C,\gamma} \subset G_\gamma$ for each $n \in \mathbb{N}$ and $\gamma \in \Gamma$. Let us set

$$H_{n,m,\gamma} = \bigcup \{Z_{n,C,\gamma} : C \in E_m'\}$$

for each $n, m \in \mathbb{N}$ and $\gamma \in \Gamma$. It is easy to see that $H_{n,m,\gamma}$ is closed with $H_{n,m,\gamma} \subset G_\gamma$ for each $n, m \in \mathbb{N}$ and $\gamma \in \Gamma$. So we find a subshrinking

$$\{H_{n,m,\gamma} : n, m \in \mathbb{N} \text{ and } \gamma \in \Gamma\} \cup \{H_{n\gamma} : n \in \mathbb{N} \text{ and } \gamma \in \Gamma\}$$

for the open cover \mathcal{G} which completes the proof.

Notice that for any subparacompact space X Yajima [21] gives a sufficient condition for $X \times \kappa$ to be subshrinking.

ACKNOWLEDGMENT

The author would like to thank Professor T. Hoshina for his useful help with this paper.

REFERENCES

21. ——, Subnormality of $X \times \kappa$ and Σ-products, Topology Appl. (to appear).

Institute of Mathematics, University of Tsukuba, Tsukuba-shi 305, Japan