Countable paracompactness of $\Sigma$-products
HTML articles powered by AMS MathViewer
- by Le Cheng Yang
- Proc. Amer. Math. Soc. 122 (1994), 949-956
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216827-X
- PDF | Request permission
Abstract:
It is known that $\Sigma$-products of compact spaces always are countably paracompact but not necessarily normal. In the present paper it is proved that a $\Sigma$-product of paracompact $\sigma$-spaces is normal if and only if it is countably paracompact.References
- Amer Bešlagić, Normality in products, Topology Appl. 22 (1986), no. 1, 71–82. MR 831182, DOI 10.1016/0166-8641(86)90078-7
- H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785–796. MR 107222, DOI 10.2307/2372929
- Geoffrey D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47–54. MR 254799, DOI 10.2140/pjm.1970.32.47 S. P. Gul’ko, On the properties of $\Sigma$-products, Soviet Math. Dokl. 18 (1977), 1438-1442.
- Takao Hoshina, Products of normal spaces with Lašnev spaces, Fund. Math. 124 (1984), no. 2, 143–153. MR 774506, DOI 10.4064/fm-124-2-143-153
- Takao Hoshina, Shrinking and normal products, Questions Answers Gen. Topology 2 (1984), no. 2, 83–91. MR 776570
- Takao Hoshina, Normality of product spaces. II, Topics in general topology, North-Holland Math. Library, vol. 41, North-Holland, Amsterdam, 1989, pp. 121–160. MR 1053195, DOI 10.1016/S0924-6509(08)70150-8 A. P. Kombarov, On tightness and normality of $\Sigma$-products, Soviet Math. Dokl. 19 (1978), 403-407. K. Morita, Note on products of normal spaces with metric spaces, unpublished.
- Keiô Nagami, $\sigma$-spaces and product spaces, Math. Ann. 181 (1969), 109–118. MR 244944, DOI 10.1007/BF01350630
- Keiô Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1971/72), no. 3, 261–270. MR 301688, DOI 10.4064/fm-73-3-261-270 —, $\Sigma$-spaces, Fund. Math. 65 (1969), 169-192.
- Jun-iti Nagata, Modern general topology, 2nd ed., North-Holland Mathematical Library, vol. 33, North-Holland Publishing Co., Amsterdam, 1985. MR 831659
- Teodor C. Przymusiński, Products of normal spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 781–826. MR 776637
- Mary Ellen Rudin, Book Review: Aspects of topology // Book Review: Set-theoretic topology: With emphasis on problems from the theory of coverings, zero dimensionality, and cardinal invariants, Bull. Amer. Math. Soc. 84 (1978), no. 2, 271–272. MR 1567046, DOI 10.1090/S0002-9904-1978-14471-1
- Mary Ellen Rudin, The shrinking property, Canad. Math. Bull. 26 (1983), no. 4, 385–388. MR 716576, DOI 10.4153/CMB-1983-064-x
- Mary Ellen Rudin and Michael Starbird, Products with a metric factor, General Topology and Appl. 5 (1975), no. 3, 235–248. MR 380709, DOI 10.1016/0016-660X(75)90023-9
- Yukinobu Yajima, On $\Sigma$-products of $\Sigma$-spaces, Fund. Math. 123 (1984), no. 1, 29–37. MR 755616, DOI 10.4064/fm-123-1-29-37 —, On $\Sigma$-products of semi-stratifiable spaces, Topology Appl. 25 (1987), 1-11.
- Yukinobu Yajima, The shrinking property of $\Sigma$-products, Tsukuba J. Math. 13 (1989), no. 1, 83–98. MR 1003593, DOI 10.21099/tkbjm/1496161008 —, Subnormality of $X \times \kappa$ and $\Sigma$-products, Topology Appl. (to appear).
- Phillip Zenor, Countable paracompactness in product spaces, Proc. Amer. Math. Soc. 30 (1971), 199–201. MR 279769, DOI 10.1090/S0002-9939-1971-0279769-7
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 949-956
- MSC: Primary 54B10; Secondary 54D10, 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1994-1216827-X
- MathSciNet review: 1216827