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Abstract. In the space of continuous functions of a real variable, the set

of nowhere dilferentiable functions has long been known to be topologically

"generic". In this paper it is shown further that in a measure theoretic sense

(which is different from Wiener measure), "almost every" continuous function

is nowhere dilferentiable. Similar results concerning other types of regularity,

such as Holder continuity, are discussed.

1. Introduction

In [5] a translation-invariant, measure-theoretic definition was given for the

notion of "almost every" on infinite-dimensional spaces.1 This concept, called

"prevalence", is intended to replace the topological notion of "genericity" in
contexts where a measure-theoretic result is preferred. The goal of this paper is

to show that in terms of prevalence, almost every continuous function of a real

variable is nowhere dilferentiable.2
We denote by C[0, 1] the Banach space of continuous functions from [0, 1]

to R. For simplicity we consider only functions in this space, though our results

also hold for functions defined on all of R. Our main result is as follows.

Theorem 1. Almost every function in C[0, 1] is nowhere differentiate; that is,
the nowhere differentiable functions form a prevalent subset of C[0, 1].

Before we discuss the general definition of prevalence, let us state in more
familiar terms exactly what we will prove about the set of nowhere differentiable

functions in C[0, 1].

Proposition 1. There exist functions g and h in C[0, 1] such that for all f £

C[0, 1], the function f+Xg + ph is nowhere differentiable for Lebesgue almost
every (X, p) £ R2.
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In other words, the space C[0, 1] can be partitioned into parallel planes in

such a way that in each plane, almost every function (with respect to Lebesgue
measure) is nowhere differentiable. The plane spanned by g and h is then

a "probe" for the set of nowhere differentiable functions in the sense of the

following definition.

Definition 1. Given a set S c C[0, 1], we say that a finite-dimensional subspace

P c C[0, 1] is a probe for S provided that for all / e C[0, 1], Lebesgue
almost every point in the hyperplane f + P belongs to S.

If aBorelset S c C[0, 1] has a probe, then we say S is prevalent. (However,

a Borel set can be prevalent without having a probe; see [5] for the precise

definition of prevalence.) A non-Borel set is prevalent if it contains a prevalent

Borel set.
Thus Proposition 1 would directly imply Theorem 1, with a two-dimensional

probe, were it not for the fact that the set of nowhere differentiable functions

is not a Borel subset of C[0, 1] [9, 10]. However, this set contains the set of

nowhere Lipschitz functions (that is, functions which have no finite Lipschitz

constant at any point), and we will show that the latter set is both Borel and
prevalent, using the same two-dimensional probe.

Though we do not work out the details in this paper, using higher-dimensional
probes we can further show that almost every function in C[0, 1] is nowhere

Holder continuous. This is a good example of the difference between using

prevalence and using Wiener measure to define "almost every" on C[0, 1];
with respect to Wiener measure, almost every function in C[0, 1] is in the

Holder class C for every y < 1/2.
Another way in which "almost every" results have been formulated on func-

tion spaces like C[0, 1] is in terms of the topological notion of "genericity". A
property on a complete metric space is said to be generic if the set on which it
holds contains a countable intersection of open dense sets. The complement of

such a set is said to be of the first category ; equivalently, a first category set is a

countable union of nowhere dense sets. The Baire category theorem (see [12])

ensures that a generic property holds on a dense subset of the space.
In W a property can be topologically generic but have zero probability, in

the sense that it holds only on a set of Lebesgue measure zero. Likewise a first

category set can contain Lebesgue almost every point in the space. Furthermore,

these kinds of sets can arise naturally; several examples are discussed in [5]. The

notion of prevalence is equivalent to "Lebesgue almost every" in W .

It has long been known that the nowhere differentiable functions are topolog-

ically generic in C[0, 1]. This result was proved originally by Banach [2] and
Mazurkiewicz [11] (see also §111.34.VIII of [8] or §11 of [12] for a proof, and
for a brief explanation see the beginning of §3 of this paper). More recently the

set of nowhere differentiable functions in C[0, 1 ] has been shown to be "large"

in the stronger sense of "porosity" (see [13] and the references therein).

In §2 we construct the functions g and h which span our probe space, and

obtain an estimate on the irregularity of the functions in the probe space. We

use this estimate in §3 to prove Theorem 1 and Proposition 1, and in §4 we

briefly indicate some ways in which our main result can be extended.
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2. The probe space

Let us first explain why there is no one-dimensional probe space for the set

of continuous nowhere differentiable functions. Consider the space spanned

by a function g £ C[0, 1]. Let f(x) = -xg(x), and notice that f + Xg is
differentiable at x — X for every X £ [0, 1]. Thus for a set of X with positive

Lebesgue measure, f + Xg is not nowhere differentiable.

The functions g and h which span our probe space are based on the famous

Weierstrass nowhere differentiable function, given by

oo

f(x) -^2akcosbknx
fc=0

where 1 < ab < b. Notice that / is continuous because the sum converges

uniformly. Weierstrass proved that this function is nowhere differentiable for

some of these values of a and b (see [4]), while Hardy [4] gave the first proof

for all such a and b. An elementary proof of this result can be constructed in

much the same way as the proof of Lemma 1 below.

Let
oo     . oo      .

(1) g(x) = ^2 -r2cos2knx,        h(x) - y^ -p, sin2fc7rx.

ifc=i k=i

The function g was proposed by Hardy [4] as an example of an absolutely

continuous Fourier series whose sum is nowhere Holder continuous. This result
follows from the next lemma, which says that on intervals of length 2~k , func-

tions in the space spanned by g and h must have fluctuations of magnitude

at least proportional to l/k2.

Lemma 1. There exists a constant c > 0 such that for any ajel and any

closed interval I c [0, 1] with length e < 1/2,

(2) max(ag + ßh) - min(ag + ßh) > ^^t ■

Remark. The proof of this lemma is based on a similar argument by Kaplan,
Mallet-Paret, and Yorke [7] which is used in determining the box-counting di-
mension of the graph of the Weierstrass nowhere differentiable function. In-

cidentally, Lemma 1 implies that the graphs of g and h have box-counting

dimension 2.

Proof. Let / be a closed interval in [0,1] of length 2~m for some positive

integer m . We claim that for any continuous f,

(3) max/-min/>2m7t [ f(x)cos(2m+Jnx + 6)dx
i i h

for all positive integers j and all 6 £ [0, 2n). Since cos(2m+J'nx + 6) has

integral zero over /, adding a constant to / does not alter either side of (3).

Thus we may assume that max/ f = - min/ / = K for some K > 0. Then

\f\< K on /, and hence

2mn f f(x)cos(2m+Jnx + e)dx<2m7iK Í \cos(2m+Jnx + 9)\dx.
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Since the length of / is a multiple of the period of \cos(2m+jnx + 6)\, the

integral of this function is equal to the length of /, which is 2~m, times the

average value of the function, which is 2/n . Thus

2mn ff(x)cos(2m+jnx + 6)dx< 2mnK2-m- = 2K,
Ji n

which is equivalent to (3).

Now let f - ag + ßh; then

oo     . oo      .

f(x) = 'Y^-j-ï(acos2knx + ßsin2knx) = y/a2 + ß2^ 73cos(2fcnx + 0),

k=l k=l

where 6 £ [0, 2n) depends only on a and ß . By replacing / with the function

f/y/a2 + ß2 we may assume that a2 + ß2 = I. Then by (3), for all positive

integers j,

f °°   1
max/-min/>2mn / ]T p cos(2fc7r;c + 6)cos(2m+Jnx + 8)dx

00 imTr r
= Y,Jj¿T    (cos((2m+7 - 2*)**) + cos((2m+; + 2k)nx + 26)) dx.

Each of the functions to be integrated has the form cos((2m+J + co)nx + cp)

where co - ±2k and cp is either 0 or 26 . If k > m, then 2m+j+co is a multiple

of 2m+1. Since / has length 2~m , it follows that cos((2w+7 + co)nx + cp) has

integral zero over I for k> m, unless co = -2m+j , in which case cp — 0 and

the integrand is identically one, so its integral over / is 2~m . For k < m, we

use the following estimate in which y denotes the left endpoint of / :

i cos((2m+; + co)nx + cp) dx

_ sin((2m+> + co)n(y + 2~m) + cp) - sin((2m+> + co)ny + cp)

(2m+J + co)n

sin((2m+J + co)ny + cp + 2~mnco) - sin((2m+-' + co)ny + cp)

> -

(2m+J + co)n

'ncol \œ\
(2m+J + co)n        2m(2m+J + co) '

It then follows from the previous paragraph that

2k 2k/
max / - min / > -^.-^ - V^ ^tt (

1   J       1  J ~ 2(m + j)2    f-^ 2k2 V2»>+J -2k     2m+J + 2k
k=l

m
I ^ 2k \ 71

2(m+j)2     \^k2) 2«(2/-l)'

We claim next that
A2l 2m

¿-1 k2       m2
k=l
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for all m > 1. This inequality may be checked for m = 1,2,3,4, and
follows by induction for m > 5 using the inequality (m - I)2 > (l6/25)m2 .
The inequality from the previous paragraph then becomes

,                                %                       571
max/-min/> ^7-tt,  - -=-.-tt—=•.

i   J       i  J - 2(m + j)2     (2J - l)m2

Let j —10 and assume m > 2 ; then

n 5n
max / — min f > -^-,

i   J       i   J-2(m + l0)2     (210 — l)m2

n it 2it

- 2(6m)2     200m2     225m2'

Finally, if / c [0, 1] has arbitrary length e < 1/2, choose m > 2 such that
21_m > e > 2~m . Then for any closed subinterval J ci with length 2~m ,

,           ,^         ,           .271                n (log2)27t
max/-min/>max/-min/> 7 > -r^r-.-rr* >

i   J       i  J -   j   J       j  J - 225m2 - 450(m- I)2 ~ 450(loge)2 '

and (2) is established with c = (log2)27r/450.

3. Main result

We say that a function f £ C[0, I] is M-Lipschitz at a point x £ [0, 1] if
there exists a constant M such that for all y £ [0, 1],

\f(y)-f(x)\<M\y-x\.

We say that / is Lipschitz at x if it is Af-Lipschitz for some M.

Notice that the set of nowhere Lipschitz functions is the intersection over

positive integers M of the set of nowhere Af-Lipschitz functions. For each

Af, the latter set can be shown to be open (whence the nowhere Lipschitz
functions form a Borel set) and dense (whence the nowhere Lipschitz functions

are topologically generic) in C[0, 1]. The prevalence of the set of nowhere
Lipschitz functions, as well as Theorem 1 and Proposition 1, follows from the
next proposition.

Proposition 2. There exist functions g and h in C[0, 1] such that for all f £

C[0, 1], the function f + Xg + ph is nowhere Lipschitz for Lebesgue almost
every (X, p)£R2.

Proof. Let g and h be defined as in the previous section (by (1)), and let /

be a function in C[0, 1]. We wish to show that the set

S - {(a, ß) £ M2 : f + ag + ßh is Lipschitz at some x £ [0, 1]}

is a Lebesgue measure zero subset of R2 . Let

SM = {(a, ß) £ S: f + ag + ßh is Af-Lipschitz at some x £ [0, 1]}.

Then S is the union over positive integers Af of Sm ; hence it suffices to prove

that every Sm has measure zero.
Let N >2 be an integer, and let us cover [0,1] with N closed intervals of

length e - l/N. Let / be one of these intervals, and let

J = {(a, ß) £ Sm'- f + otg + ßh is Af-Lipschitz at some x £ I}.
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We will show that J is contained in a disk of radius Ce(loge)2 for some

constant C independent of / and e . It then follows that Sm can be covered
by N = e~x such disks whose total area is 7rC2e(loge)4. As e -* 0, the total

area of the cover goes to zero, and therefore Sm has measure zero.

Consider two points (ax, ßx) and (02, ß2) in /. For i = 1, 2, let f¡ =
/ + a¡g + ßjh and let x¡ be a point in / at which f is Af-Lipschitz. Then

for all x £ I,

\fi(x) - f(Xi)\ < M\x - x¡\ < Me.

It follows that

\fi(x) - fi(x) - (fx(xx) - f2(x2))\ < 2Me,

for all x £ I, and hence

max(/i - f2) - mm(/i - f2) < 4Me.

Now fx - f2 = (ax - a2)g + (ßx - ß2)h , and thus by Lemma 1,

^(o, - a2)2 + (ßx - ß2)2 < ^e(loge)2.

Therefore J lies within a disk of radius (4Af/c)e(loge)2 as claimed, and the

proof is complete.

4. Other results

Given y £ (0, 1), we say that a function / e C[0, 1] is "Holder continuous
with exponent y ", or Cy, at a point x e [0, 1] if there exists a constant Af

such that for all y £ [0, 1],

\f(y)-f(x)\<M\y-x\y.
Using the methods in this paper one can prove the following result.

Proposition 3. For each y £(0, 1), almost every function in C[0, 1] is nowhere

For y > 1/2, the proof of the above proposition is virtually identical to the

proof of Proposition 2. (The analogue of the set J is shown to be contained

in a ball of radius Ce7(loge)2, and hence the total area of the cover is at most

C2e2),_1(loge)4.) However, for y < 1/2 a higher-dimensional probe is needed;

specifically, the dimension must be greater than l/y . (The necessity of this high

a dimension can be proved in much the same way that the necessity of a two-

dimensional probe was proved at the beginning of §2. Instead of multiplying

by x, the basis functions of a hypothetical «-dimensional probe are multiplied

by the coordinates of a "space-filling" function from [0,1] onto the unit cube

in R" ; this function can be constructed to be Holder continuous with exponent

l/n . It follows that for y < l/n , there is no «-dimensional probe for the set

of continuous functions which are nowhere Cy.)
The main technical difficulty in proving Proposition 3 is constructing a set of

n functions for which one can prove an analogue of Lemma 1. One approach

is to replace the functions g and h with functions {gx, g2, ... , g„} defined

by
00   .

gj(x) = Y,-r2cos2(k-Vn+j7ix.

k=l
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Once the higher-dimensional probe is constructed, the necessary changes to the

proof of Proposition 2 are minor.

In [5] it is shown that a countable intersection of prevalent sets must be

prevalent. This, together with Proposition 3, implies the following result.

Proposition 4. Almost every function in C[0, 1] is nowhere Cy for any y > 0.

With further modification to the probe functions (replacing l/k2 with a

decaying exponential), one can further prove the following result. (By C[0, 1]

we mean the space of functions which are uniformly C on [0, 1].)

Proposition 5. For 0 < y < 1, almost every function in C[0, 1] is nowhere Cs

for any ô > y.

Propositions 4 and 5 are also known to be true in the context of genericity

[1].
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