Sums and products of cyclic operators
HTML articles powered by AMS MathViewer
- by Pei Yuan Wu
- Proc. Amer. Math. Soc. 122 (1994), 1053-1063
- DOI: https://doi.org/10.1090/S0002-9939-1994-1203995-9
- PDF | Request permission
Abstract:
It is proved that every bounded linear operator on a complex separable Hilbert space is the sum of two cyclic operators. For the product, we show that an operator T is the product of finitely many cyclic operators if and only if the kernel of ${T^ \ast }$ is finite-dimensional. More precisely, if dim ker ${T^ \ast } \leq k(2 \leq k < \infty )$, then T is the product of at most $k + 2$ cyclic operators. We conjecture that in this case at most k cyclic operators would suffice and verify this for some special classes of operators.References
- C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators. II, Pitman, Boston, MA, 1984.
- Lawrence G. Brown, Almost every proper isometry is a shift, Indiana Univ. Math. J. 23 (1973/74), 429β431. MR 328634, DOI 10.1512/iumj.1973.23.23035
- Kenneth R. Davidson and Domingo A. Herrero, The Jordan form of a bitriangular operator, J. Funct. Anal. 94 (1990), no.Β 1, 27β73. MR 1077544, DOI 10.1016/0022-1236(90)90027-I
- R. G. Douglas and Carl Pearcy, A note on quasitriangular operators, Duke Math. J. 37 (1970), 177β188. MR 257790
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179β192. MR 322534
- I. Gohberg, P. Lancaster, and L. Rodman, Invariant subspaces of matrices with applications, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR 873503
- P. R. Halmos, Products of shifts, Duke Math. J. 39 (1972), 779β787. MR 313860
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- Domingo A. Herrero, David R. Larson, and Warren R. Wogen, Semitriangular operators, Houston J. Math. 17 (1991), no.Β 4, 477β499. MR 1147270
- Domingo A. Herrero and Warren R. Wogen, On the multiplicity of $T\oplus T\oplus \cdots \oplus T$, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp.Β 445β466. MR 1065843, DOI 10.1216/rmjm/1181073120
- Nikolai K. Nikolskii, Multicyclicity phenomenon. I. An introduction and maxi-formulas, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, BirkhΓ€user, Basel, 1989, pp.Β 9β57. MR 1030049, DOI 10.1007/978-3-0348-5587-7_{1}
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 1053-1063
- MSC: Primary 47A05; Secondary 47A68
- DOI: https://doi.org/10.1090/S0002-9939-1994-1203995-9
- MathSciNet review: 1203995