One-sided ideals and derivations of prime rings
HTML articles powered by AMS MathViewer
- by Matej Brešar
- Proc. Amer. Math. Soc. 122 (1994), 979-983
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205483-2
- PDF | Request permission
Abstract:
The action of derivations on right ideals of prime rings is considered.References
- Jeffrey Bergen, I. N. Herstein, and Jeanne Wald Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), no. 1, 259–267. MR 627439, DOI 10.1016/0021-8693(81)90120-4
- Matej Brešar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83–88. MR 1112014
- L. O. Chung and Jiang Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415–421. MR 644530, DOI 10.4153/CMB-1981-064-9
- A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2) 30 (1981), no. 2, 199–206. MR 651152, DOI 10.1007/BF02844306
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135 —, Rings with involution, Univ. of Chicago Press, Chicago, 1976.
- I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369–370. MR 506447, DOI 10.4153/CMB-1978-065-x
- I. N. Herstein, A condition that a derivation be inner, Rend. Circ. Mat. Palermo (2) 37 (1988), no. 1, 5–7. MR 994134, DOI 10.1007/BF02844264
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- Edward C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 95863, DOI 10.1090/S0002-9939-1957-0095863-0
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 979-983
- MSC: Primary 16W25; Secondary 16N60
- DOI: https://doi.org/10.1090/S0002-9939-1994-1205483-2
- MathSciNet review: 1205483