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PERMUTATIONS AND PRESENTATIONS

PETER CHOLAK AND ROD DOWNEY

(Communicated by Andreas R. Blass)

Abstract. We say that an automorphism <P of ÏÏ* (the lattice of recursively

enumerable sets modulo the finite sets) is induced by a permutation p iff for

all e , <b(We) =* p{We). A permutation h is called a presentation of <P iff

for all e , ®(We) =* Wh^ . In this paper, we will explore the degree-theoretic

connections between these two notions. Using a new proof of the well-known

fact that every automorphism is induced by a permutation p , we show that such

a p can be found recursively in h © 0" , where A is a presentation of <J>. The

main result of the paper is to show that there is an effective automorphism of

f* which is not induced by a A2-permutation.

Ever since the ground-breaking paper of Post [Po], a central object of recur-
sion theory has been the lattice of recursively enumerable sets modulo the finite

sets, ¿?*. This object, its automorphism group Aut(áf* ), and their relation to

the degrees of unsolvability have been extensively studied.

In this paper we study the relationship between Aut(tf*) and the group of

permutations of co. It has long been known (see [Sol]) that each automorphism

<P of tf* is induced by a permutation p of œ. Our concern is the relationship

between the complexity of <P and the permutation that induces O.

To be precise, we say O is a An+x-automorphism iff <P has a presentation

h i h is a permutation and for all e, <&iWe) =* W^) such that h <T 0".

Furthermore, we say <P is effective iff <P has a recursive presentation. In this
paper, we will examine whether every A„-automorphism can be induced by a

A„-permutation.

In Theorem 1, we show that every automorphism is induced by a permutation

p, where p <t h © 0" and « is a presentation of <P. This slightly improves

Soare's result (see [Sol] or [So2, XV.2.5]) that every automorphism is induced

by a permutation p, where p <t (A © 0')' and « is a presentation of O.
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Therefore, if O is a A„ -automorphism, for any n > 3, then «J> is induced by

a A„-permutation.

By Jockusch (see [So2, XV.2.13]) we know that if <P has a presentation

whose degree is less than or equal to 0' then <P has a recursive presentation

and hence there is no properly A2-automorphism.

Thus, the only question left open is the relationship between an effective

automorphism and the complexity of the permutation that induces it. Martin

(see [So2, XV.3]) showed that there are effective automorphisms which are not

induced by any recursive permutation. There are many proofs of this result.
For example, by [CDS] we know that if A is incomplete, promptly simple, and

not hyperhypersimple, then A is effectively automorphic to a complete set and

clearly such an automorphism cannot be induced by a recursive permutation

(A =t p(A)), if p is recursive. In Theorem 2, we improve Martin's result to

show: there is an effective automorphism of I?* which is not induced by a

A2-permutation.

Our notation is standard and follows Soare [So2]. All sets used are r.e.

Theorem 1. Every automorphism <P is induced by a permutation p, where p

<t A © 0" and h is a presentation of <P.

Proof. Let p = (jpn , where finite partial functions pn are defined by induction

on n as follows: Let p-X = 0. Given any finite L c co and any linear order

-< on L, let a(L,x) = {i : x e W¡.}, where L = {/0 -< lx -< ■■ ■ -< lm}
(So for all x, 0(0, x) = 0 .) o(L, x) is uniformly recursive (in indices for

both L and -< ) in 0'. Since <I> is an automorphism, for any e and any

subset a of {0,1,...,«?}, {x : a({0 < 1 <•••-< e}, x) = 0}is infinite iff
{x : a({h(0) -< A(l) -< • • • -< hie)}, x) = 0} is infinite. Let L \ -1 = 0, and let
L \ i = {k -< h -< ■ ■ ■ -< ¡i} , where L = {lo <lx < ■■■ <lm} and i <m.

For all even n, use the following procedure: Let xn be the least integer
not in the domain of p„-i ■ Using h, let L„ = {0 -< 1 -< •• • -< ^„}and

L„ = {h(0) -< h(l) -< ■■■ < h(xn)}. Using 0", let en be the greatest e

such that -1 < e < x„ and there exists a y not in the range of pn-X with

o(L„ \ e, xn) = o(Ln \ e, y). Let y„ be the least integer not in the range of

pn-x such that o(Ln \ en , x„) = o(L„ \ en , yn). Define p„ = pn-X IJ{(Jt:n, yn)} ■

For all odd n, use the following procedure: Let y„ be the least integer

not in the range of pn-\ • Using h, let Ln = {0 -< 1 -< ••• -< y„}and

L„ = {/z(0) -< A(l) -< • ■ ■ -< h(yn)}. Using 0", let en be the greatest e such

that -1 < e < y„ and there exists an x not in the domain of pn_x with

ct(L„ \ e, x) = cr(L„ r e, y„). Let xn be the least integer not in the domain of

p„_i such that (7(L„ f en , xn) = rj(L„ \ e„, yn). Define p„ = pn-X IJ{(x„ , y„)} .
Clearly, p = \Jpn is a permutation and p <t h © 0". Since O is an

automorphism of -f*,  lim„e„ = 00, and hence, it follows that piWn) =*

wh(n).  u

Theorem 2. There is an effective automorphism O of tf * such that O is not
induced by any permutation whose Turing degree is less than or equal to 0'.

Proof. Building an effective automorphism of W* is a complex task. We will

fix two copies of the natural numbers co and co (all integers living on the

hatted side will wear hats). Now, given an enumeration of {We}e<0} living

in co, say {U„tS}„<s<0), we will build the image of U„ in co, Û„ = 0(f/„).
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Given another enumeration of {We}e<w living in co, say {Vn<s}„tS<w , we will

build the preimage of V„ in co, Vn = <f>~xiVn). To ensure that <P is an

automorphism of %* we need to meet the requirements Rv below. However,
to state these requirements, we need the following definitions.

Definition 3. For any e, if we are given uniformly recursive enumerations

{Xn,s}n<e,s<w and {Yn,s}n<e,s<(o of r.e. sets {Xn}n<e and {Yn}n<e, define

the full e-state of x at stage s, v(e, x, s), with respect to (w.r.t.) {Xn,s}n,s<ai

and {T„ j}„ J<ft) to be the triple

v(e, x, s) = (e, o(e, x, s), x(e, x, s))

where

a(e, x, s) = {i:i <e r\x e XitS)   and   r(e, x, s) = {i : i < e A x e YjtS}.

Definition 4. Given any collection of r.e. sets {Xn}n<w and {Yn}n<w, define

the final e-state of x , vie, x), with respect to {X„}n<m and {Yn}n<0] to be

the triple
v(e, x) = (e,o(e,x),z(e,x))

where

ct(i? , x) = {i : i < e a x e Xf}   and   r(e, x) = {/:/'< e A x e Y¡],

(This last definition is slightly different from the normal definition of the

final e-state of x. Normally, lim.;-^ v(e ,x,s) = v(e, x) But that assumes

that there are uniformly recursive enumerations of {Xn}n<w and {Yn}n<w. In

this construction, that will be the case, but it is not always the case; see [Ch].)

Now to ensure that <P is an automorphism of if *, where ®(Un) = Û„ and

®~liVn) = K , we need to meet the following requirements: for all n ,

iQn) both (f„ and Vn    are r.e.

and for each final e-state v ,

3°°x e co with final e-state v w.r.t. to {Un}n<a) and {V„}n<a)

(R*) iff

3°°x e co with final e-state v w.r.t. to {Û„}n<Co and {Vn}n<(a.

To ensure <P is an effective automorphism, we must build U„, Vn, Û„,

and V„ such that for some recursive functions fx and f2, We =* U/^e) and

Û„ =* H/2(„) (i.e., Q>(We) =* rVf2(f(e))) and for some recursive functions gx

and g2, We= Vgx(e) and Vn =* Wgl(n) (i.e., <t>-\We) =* Wgl{gx{e))). (Given

f and g,, by using the Padding Lemma (see [Sol, 1.3.2]), we can construct a

recursive permutation h such that <P(IF„) = Ûn =* Wh(n) and hence <I> is an

effective automorphism.)

Let p be a permutation of co. If O is induced by p~x then for all r.e. sets
X, <P(X) =* p~xiX). We will think of p~x as a one-to-one onto map from

co to co. Hence, to show <P is not induced by p~x (also a permutation of

deg(p)), it is enough to either find some r.e. set X and infinitely many jc, such
that

V/[.x, $ ®iX) but Xi € p~l{X)   (or equivalents pix¡) e X)]
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or to find some r.e. set Y and infinitely many x¡ such that

Vz[Jc, e <&{Y) but x¡ <£ p~\Y)    (or equivalently p(Jc,) i Y)].

By the Limit Lemma, if deg(/?) <r 0', there exists an e such that for all Jc,

Pix) = limi_ù,{e}(i:, s). Therefore, to ensure that <P is not induced by a

A^-permutation, it is enough to meet the following requirements:

Xx lim{e}(Jc, s) is not a permutation; or
J—»CD

there is an r.e. set Xe and infinitely many xe,, such that

(P.) V/[xe>¡ i 4>iXe) but tim{e}(xe,i, s) e Xe)] ; or
v    cI S—P-tt)

there is an r.e. set Ye and infinitely many xe >, such that

V/[Jce , 6 Q(Ye) but lim{e}(Jce ,:, s) i Ye)].
s—*ca '

The easiest strategy to meet this requirement is for each e to choose infinitely

many xe,¡ and for all i, s, and t if {e}t(xej, s) 1 place {e}t(xe,i-, s) into

Xe but hold Jce>. out of 0(Xe). Unfortunately, we cannot do this and meet

(Rv). For example, it is possible under this strategy that Xe = co (this could

occur if for all i, {e}i(xej, i)i= i). However, by modifying the above strategy

as follows it is possible to meet (R„) and (Pe).

Since we are allowed to choose any enumeration of {We}e<0}, we can let

U2i,s = Xj<s and U2¡+X¡s = Wis. This is, we will build U2e during the con-
struction to witness the meeting of requirement (Pe). Note that this gives us

control over <P(Xe) = <P(£/2<») • Let {M¡ : i < co} be a uniformly recursive

collection of disjoint infinite recursive sets such that for all x there exists an

/ with x e Mi i Mi will be a copy of A/, in co). Let V2i<s = Mi¡s and
Vii+i.s = Wi.s' (Hence, recursive fx and gx exist.)

Hence, we can meet (Pe) by meeting the following subrequirements:

Xx lim{e}(i:, s) is not a permutation; or
s—>a>

(pe,k)        tnere is an xe>k > k such that xe,k e V2e and xe>k £ 0(t/2i.)

but either lim{e}(xe k, s) $ V2e or lim{e}(xe k , s) e U2e.
S—KÛ ' S—»CO '

If we build <P to be an automorphism and meet the subrequirement iPe<k) for

all k, then we will have met (Pe). Either there are infinitely many Jc such

that x $ 0(t72e) and lims^cüjeKx, s) e U^, or there are infinitely many Jc

such that Je e V2e =* 0(1^) and limJ_û.{e}(Jc, s) $ V2e. We will meet the

subrequirement (Pe,k) (and hopefully (Rv) as well) as follows:

At each stage s, we will associate with iPe>k) two finite sets Feks (a subset

of Me ) and Fe<k,s (a subset of Me ). We will ensure that (Ji^e./t.o: k < co} =

Me, \J{Fe,k,o' k < co} = Me , and if ko ± kx then Fe¡ko¡0 n/^.^.o = 0 and

Fe,ko,o n Fe>ki3o = 0 We will try to ensure that Fetk<s 2 FetkiS+x, Fe>kt!t 2

Fe,k,s+l > Fe,ktS C\tJ2etS = 0 ,

(1) \Fe,k,s\>\{j{Fe,k',o-k' <k}uFe,ktS\,
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and for all (2e + fc)-states v ,

there exists anx eFeks such that i/(2e + k, x, s) = v

(2) iff

there exists an y 6 Fe¡k¡s such that i/(2e + k, y, s) = v

where i/(2e + k, x, s) is measured w.r.t. {Un>s}n>s<a> and {Vn,s}n,s<w and

v{2e + k,y,s) is measured w.r.t. {Un>s}„,s<0) and {V„tS}„tS<ta. (More re-

garding how we will ensure this later.) Let xeFekoo iff for all s, xeFek¡s,

and let yeFejky00 iff for all s, y eFe,k>s.

Since both Feks and Feks are finite and nonincreasing (in size) in í , for

all (2e + <-c)-states v , there exists an jc e Fe^ky00 such that i/(2e + k, x) =

v (w.r.t. {Un}n<to and {Vn}n<w) iff there exists aye Fgtkoo such that

i/(2e + k, y) = v (w.r.t. {V„}n<0) and {Û„}n<0)). Hence there is an iso-

morphism between IJ{^,/t,<x> '■ e,k < co}and \J{Fe,k¡00 : e, k < co} (For
this to occur it is important that we meet (2) with respect to (2e + &)-states

or at least ( max(e, k) )-states rather than just Â>states. As a referee noted it
is possible to replace (2e + /c)-states with ( max(e, k) )-states in (2).) Should

it be the case (it will not) that for all e, \J{Fe>koo : e, k < co} = Meand

{j{Fe,k,oo :e, k < co} = Me ,v/e will have met (/?„).

The easiest way to meet condition (2) is to use matching. That is, for all

x e Fe,k>s, ensure that Je e Fe¡kyS and i/(2e + k, x, s) = i/(2e + k,x,s),

where x is the copy of x in to, <v(2e+/c, x, s) is measured w.r.t. {U„tS}n,s<to

and {Vn,s}n,s<(o, and iv(2e + k, x, s) is measured w.r.t. {t7„;í}„>í<(U and

{Yn,s}n,s<w (i-e., x e C/,;S iff x G Ûi>s, and x e Vi,s iff Jc 6 VitS. For more

on the use of matching see [CDS].) However, we cannot use matching and meet

condition (1) (using matching implies that \Fe>k>s\ = |-Fe>jfc,j| ).
Very informally, we will use the following strategy to meet condition (2): At

every stage s, associated with every Fe¡k,s and Fetk¡s, there will be a (2e+in-

state ueks. Assume there is an x e Fe¡ks such that Je e Vn,s+\ - Y„tS. If

L>i2e + k, x, s) = v / veks, then we will ensure that there is at least one
element of Feks in the same (2e + k)-state v and will raise the least one

to match Jc's new state. If i^(2e + k, x, s) = uek s and there are at least

two elements of Fek^ in the same (2e + /c)-state ueks, we will raise one

of them to match Jc's new state. Otherwise we will define ^,^,5+1 C Feks

and Fek^s+X c FetktS so that all the elements in these sets have the same

(2e + ,-c)-state ueks+x at stage s + 1 and condition (1) holds. Hopefully these

sets will be big enough for us to continue using this strategy and maintain (1).

(We will take a similar action if there is an x e Fe k s such that x e UnjS+x -

Un,s ■) We will call this strategy pseudomatching. (We will explore the details

of pseudomatching later.)
Now if Axlimi_(C(.{e}(Jc, s) is a permutation then by (1) for large enough 5

there exists a z e Feks such that {e}(z, s) £ \J{FejkltS : k' < k}. Hence,
we can add {e}(z, s) to U2e to meet iPe¡k) without interfering with (2) for

k' < k . However, if {e}(z, s) e Fek, s, this will interfere with condition (2)

and the need to keep Û& n Fetk. ;00 = 0, for some k' > k. To get around this
problem, we will do the following: Assume we add {e}(z, s) to U^ at stage

t. We will define Fe,k< j = 0 and Pe k. t = 0, for all k < k' < t. Hence, this
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will injure Pe^ , but if AJclimJ_.C(,{e}(Jc, s) is a permutation, this will only

injure finitely many Pe,k' ■ (Again, we will go into more detail later.)

Let T = {x : x e Feks-Fe>k<s+X, for some e, k, s < co} and f = {x : x e

Pe,k,s-Pe,k,s+\ for some e,k,s < co}. Hence \J{Fetky00 : e, k < co} = T

and IJ{^,A:,oo : e, k < co} = T. Therefore, by the use of pseudomatching,

there is an isomorphism between T and f. We now need to extend this

isomorphism into an automorphism. To do this, we will use the Extension

Theorem. Hence (_R„) will divide into two subrequirements, namely,

3°°x e T with final e-state v w.r.t. to {Un}n<0} and {Vn}n<œ

(RÎ) iff

3°°Jc € f with final e-state v w.r.t. to {Ûn}n<0) and {Vn}n<w,

and

3°°x e T with final e-state v w.r.t. to {Un}n<ll) and {V„}„<w

(Rl) iff

3°°Jc e T with final e-state v w.r.t. to {Un}„<co and {Vn}n<w.

We will meet (/?£) by using pseudomatching and meet (i?¿) by using the Exten-

sion Theorem. Before we state the Extension Theorem, the following definitions

are needed.

Definition 5. Given states v = (e, a, x) and v' = (e', a', x'), then

(i)   v < v' iff e < e', a = a' n {0, 1, ... , e} and x = x' n {0, 1, ... , e} ,
(ii)   v'  covers v  (u < v') iff e = e', a ç a', and x' Çx, and

(iii)   v'  co- covers  v iff v > v'.

Definition 6. Given recursive enumerations {Xs}s<m and {yi}i<û» of X and

Y,

(i)   X\Y = {z: (3s)z eXs- Ys} , and

(ii)   X\Y = (X\Y)r\Y.

Theorem 7 (The Extension Theorem [Sol, So2, XV.6]). Assume T and f are

infinite r.e. sets and {Un}„<(l), {Vn}n<(0, {Ü„}n<(0, and {Vn}n<0} are recur-

sive arrays of r.e. sets. Let {Ts}s<0), {fs}s<w, {U„tS}„,s<<0, {Pn,s}n,s<a>,

{Ùn,s}n,s<û>> and {V„tS}n!S<ù) be a simultaneous enumeration of the above r.e.

sets. For each full e-state v define

Dl = {x : 3s(x e Ts - Ts-X and v = v(e, x, s)

W.r.t. {Un,s}n,s<m and {V„,s}n,s<a>)}

and

Dl = {x : 3s(x e fs - fs-X and v = v(e ,x,s)

w.r.t. {Ü„íS}n)S<<ú and{Vn,s}n,s<ü))}.

If x e Df, we say that v is the entry e-state of x (likewise for x ). Suppose
our simultaneous enumeration satisfies the following conditions:

(3) Vn[T\P„ = T \O„ = 0],

(4) iVv)[Y>î is infinite => '3v' > v)[Dl is infinite ]],

(5) (Vf)[£>J is infinite =>• (3i/' < v)[Dl is infinite ]].
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( We will sometimes say that condition (4) ¿s " T covers f " and condition (5) is

" T co-covers 7"'.) Then there are r.e. sets Un extending Ün and Vn extending

V„ such that Rl is satisfied. Furthermore, U„ = Ûn \ T and V„ = V„\ T
ithis follows from the proof since if x £ Ü„, we will only add x to U„ if

x e f) and there are recursive functions f2 and g2 such that Un =* Wfl(ji) and

Vn =* Wgún).

If we have a simultaneous enumeration of T, T, {U„}n<w, {Vn}„<w,

{Vn}n<w, and {Ün}n<(0 that satisfies the hypotheses of the Extension Theorem

and the following requirements:

3°°x e T with final e-state v w.r.t. to {Un}n<(0 and {V„}n<0)

(Rl) iff

3°°x e T with final e-state v w.r.t. to {Un}n<m and {Vn}n<w,

then using the Extension Theorem it is possible to meet the Rv 's (and clearly

the Qe's).
Recall that {M¡ : i < co} is a uniformly recursive collection of disjoint

infinite recursive sets such that for all x there exists an i with x e M¡ ( M¡

will be a copy of M¡ in co). Assume that {U2n+X,s}n,s<œ is a simultaneous

enumeration of {We}e<(a, {V2n+X,s}n>s<w is a simultaneous enumeration of

{rVe}e<û), and {V2n,s}n,s<w is a simultaneous enumeration of {Me}e<w such

that U2n+X = Wn, V2n+X = Wn, V2n = M„, and for every stage s > 0 there

exists a unique (x, i) such that either i is odd and x € Ui,s — U¡íS-i, or

x e VitS - Vi,s-\ (x is the copy of x in co).

We   need   to   build   a   simultaneous   enumeration   {Ts}s<w,    {fs}s<0],

{CJ2n,s}n,s<co ;   {'n,s}n,s«o • and   {lfn,s}n,s<w   Ol   T,   T,   {U2n}n<w ,   {Vn}n<ai>

and {Ü„}n<(o such that iPe¡k) and iR0,) are met and the enumeration satis-

fies the hypotheses of the Extension Theorem. (Clearly, if desired, the above

enumerations can be combined into one simultaneous enumeration which also

satisfies the hypotheses of the Extension Theorem.) Note that T and f will
be automorphic r.e. sets; O(r) = T.

For the rest of the construction, we will fix the following notation. We will use

,v(e, x, s) for the full e-state of x at stage 5 with respect to {Un¡s}ntS<w and

{Yn,s}n,s<co and v(e,x,s) for the full e-state of Jc at stage s with respect to

{U„,s}n,s<w and {Vn¡s}„¡s<(0. x is the copy of x in co and x is the copy of

Jc in co.

We will use pseudomatching to meet (R0,) as follows: First, if z £ Ts, then

there exists e, k such that z € Pe,k,s (the same holds for x £ Ts). Assume

z 6 (Vn>s+X n Ts) - Vn¡s (where n < 2e + k ). Let x be an element of Feks

such that i>(2e + k, x, s) = v(2e + k, z, s) (such an element will always exist,

see Lemma 8(i)). There are two cases, namely: If u(2e + k, x, s) ^ ueks or

there are at least two different such x , place the least such x into Vn at Stage

pS+1.

Otherwise, define L(s) and L(s) as any of the largest possible sets such

that for some (2e + /c)-state veks+x ¿ ve,k,s > L(s) = {y '■ v(2e + k, y, s) =

Ve,k,s+\ Aye Fe¡kiS} and L(s) = {w : v(2e + k,w,s) = ueiks+x Awe

Pe,k,s} • These sets will be big  enough for us to continue pseudomatching
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and maintain (1) (for more see Lemma 8(viii)). We will define FekiS+x c L(s)

and Peks+X c L(s) such that (1) holds. For all y 6 Feks - Fe>ktS+x we will

add y to T at stage s + 1, and for all w e Pe,k,s ~ Pe,k,s+\ we will add w

to T at stage s + 1. (To make life easier, we will always put one quarter of the

integers in L(s) into T and three quarters of those in L(s) into T at stage s.

We have passed the problem of "matching" z on to the Extension Theorem.)

We say that we were forced to dump for e and k at stage s + 1 by z and we

will call this action dumping for e and k.

Assume x e (Un!s+inTs)-U„tS (for n < 2e+k). Let z be the least integer

in Petk,s such that u(2e + k, x, s) = v(2e + k, z, s) (again such a z will

always exist). If either i/(2e + k, x, 5) ± ve,k,s or there is a y e Fetk>s such

that x ^ y and v(A2e + k, y, s) = ue k s, then z e Ü„¡s+X. Otherwise, we will

use the above dumping procedure for e and k .

To meet iPe,k) we will take the following action at stage 5. We will as-

sociate with (Petk) a function t(e,k,s). Initially t(e,k,0) = 0. Assume

Xx limJ_(U{e}(Jc, s) is a permutation and, for all zePe>k>s, {e}s(z, t(e, k, s)) j.

If there exists z, w e Pek s such that z ^ w but {e}s(z, tie, k, s)) =

{e}siw ,t(e,k, s)) then let t(e, k, s + 1) = t(e, k, s) + 1. If for some z e

Pe,k,s, {e}(z, t(e, k, s)) $ V2e>s U Ts, then let

t(e, k, s + 1) = t(e, k, s) + 1.

[If this is the case for infinitely many k and for almost all s, then since pseudo-

matching ensures that Peyky00 cV2euf =* <&(V2e u T) ¿* p~x(V2e U T), we do

not need to take any more action to meet (Pe), where p(x) = limJ_û.{e}(Jc, s)

(see Lemma 9(iv) for more).] Otherwise, by (1) (see Lemma 8(viii)), there ex-

ists a z € Pe)fc¡s such that {e}(z, t(e, k, s)) £ \J{Fetk>tS : k' < k} . We will
add {e}(z, t(e, k, s)) to U^ at stage s + 1 ; let

t(e,k,s+l) = t{e,k,s) + l;

and for all k' such that k < k' < s, let Fetk',s+i = 0 and PekiS+x = 0,
if x e \J{Fe>k>tS : k < k' < s} place x into T at stage s + 1, and if y €

\J{Pe,k',s : k < k' < s} place y into f at stage j + 1. We say k' was e-

injured by /c, for all fc' such that k < k' < s. Since AxlimJ_iU{e}(x, s) is a
permutation, this action for one fixed k can only e-injure finitely many k'.

(If Ax limî^a,{e}(x, 5) is not a permutation, we may have infinitely many such

e-injuries.) Note the action for iPe¡k) will not injure any Pei ^ , for any e' ^ e

and for any k'.
If we only add numbers to the Ü„ 's and Vn 's in this fashion, we will meet

condition (3) of the Extension Theorem. By condition (2) and the way we

add integers to T and f, there is an x such that x 6 iTs+x uFeyktS) - Ts

and i/(2e + k,x,s) = v iff there is a z such that z e {Ts+X U PetkjS) -

Ts and v{2e + k, z, s) > 1/ . Hence we will be able to meet conditions (4) and

(5) of the Extension Theorem. Since both FetkyS and Pek>s are finite and

nonincreasing in s, for all (2e + ,-c)-states, there exists an x e Fe¡kt00 such

that ¡v(2e + k, x) = v iff there exists a y e Pek¡00 such that i/(2e + k, y) =

v . Hence, pseudomatching will meet (/i0,). If xe ^.s+i-^f.i, then, by

pseudomatching, x e Fe,k>s+X ç Me . Thus V2e ç Me .
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The construction of T, T, {U2n}n<w, {Ü„}n<ü), {Vn}n<w,

\*e ,k ,sje ,k,s<w > AND   \fe,k, sie ,k ,s<(0

Stage 0. Let To = Tb = 0 and U2n, o = Ü„to - K,o — 0. for all n eco. Let
t(e, k, 0) = 0, for all e and k. Let vekyo = ((2e + k), 0, 0). We will now

define, by induction on /c, Fetk,0 and Pe,k,o-

Let m(e,0) = 1 and m(e ,'k) = |IJ{-fè,fc\o • k' < k}\ for & > 0. Let
p(e,/c) = 2(2e-l-/c-l-l) (this is the maximum number of times we can dump for

e and k ; see Lemma 8(v)) and q(e, k) = 22^2e+k+X) (the number of (2e + re-

states). Choose iv,fc,o as the first (in terms of order) m(e, k)(4q(e, k))p<-e'k^

elements of Me - (Ji^^'.o : k' < k} and Pe<k¡o as the first 3m(e, k)

-(4q(e, k))P(e-V elements of Me - \J{Pe,k> ,o : k' < k} .
(Let n(e, k, s) be the number of times we have dumped for e and k before

stage s. Fix some e and k. Assume that k is never e-injured by some k' < k .

In Lemma 8, we will show by induction on s that

a = \Fe¡kJ > mie, k)i4qie, jk))«t.*)-ii(«,*,*))>

b = \PetkJ > 3m(e, k)(4q(e, fc))(rt« .*)-»<•.*.')) ,

and that b - a > m(e, k). Hence condition (1) always holds.)

Stage s + 1. Unless otherwise defined below all parameters remain the same

from stage 5 to stage s + 1.

Step 1 (Building U2e and meeting (Pe,k))- For all e < 5 and k < s, if

{e}s(z, t(e, k, s))[for all z e Pe>ks, do the first case which applies.

Case a. If either Pe>ks = 0; there exist z, w e FetktS such that z ^ w

and {e}(z, t(e, k, s)) = {e}iw, t(e, k, s)) ; there exists a z e Pe,k,s such

that {e}(z, tie, k, s)) e U^^; or for some zePe<ktS, {e}{z, t{e, k, s)) $

Pit,, U Ts ; then let i(e, k, s + 1) = tie, k, s) + 1.

Case b. Otherwise, by (1) (see Lemma 8(viii)), there exists a z e Pek s such

that {e}(z, í(e, fc, s)) £ i){Fe,k>,s : k' < k} . We will add {e}(z, r(e', fc, j))
to t/2e at stage s + 1 ; í(e, k, s + 1) = t(e, k, s) + 1 ; for all k' such that

Ac < k' < s, let Fejt',í+i = 0 ; if x e \J{Fe<kiiS : k < k' < s}, place x into T

at stage 5+1 ; and if y e IJÍ^e^' ,s '■ k < k' < s} place y into T at stage s+1.

We say k' was e- injured by k at stage s, for ail k' such that k < k' <s.

(Notethat {e}(z, i(e, A:, s)) e Î^UT;. Therefore, if {e}(z, i(e, k, s)) i

Ts then {e}(z, t(e, k, s)) e Fe ki s for some í > k' > k and hence

{e}(z,t(e,k,s))eTs+x).

Step 2 (Pseudomatching to meet (R®) ). Let (x, /') be such that either / is odd

and x eUi)S+\ — Uits or x e Vi<s+X - ViyS. Use the first case which applies.

Case a. x e Fe>kjS, i < 2e + k, k has not been e-injured by stage 5 + 1,

x e Ui>s+X - Uit,, and either i^(2e + k, x, s) ¿ ve,k,s or there exists y ^ x

such that y e Fe¡k¡, and ¡v(2e + k, y, s) = ve,k,s- Then let z be the least

element of Pek¡s such that u(2e + k, x, s) = v(2e + k, z, s) (such a z will

always exist by (2); see Lemma 8(i)). Place z into ¿/,,j+i.
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Case b. x e Fe¡k>s, i < 2e + k, k has not been e-injured by stage s + 1,

x e U¡t,+\ - Uit,, u(2e + k, x, 5) = ueks, and there do not exist y / x such

that y e Feks and v(2e + k, y, s) = vttktS. Let L(s) be any of the largest
possible sets such that for some (2e+k)-state fejt,i+i #"*,*,$> L(s) = {y :

u(2e + k, y, s) = ve,k,s+\ Aye Fe¡ktS}. Let L(s) = {w : v(2e + k,w,s) =

ve,k,s+\ A«1 e Pe>k,s} . Lex n and j < 4 be such that 4n + j = \L(s)\ = \L(s)\

(by Lemma 8(ii) we can assume \L(s)\ = \L(s)\, and as to why n ^ 0, see
Lemma 8(viii)). Let Fe!k¡s+X be the first (in terms of order) n elements of

L(s), and let Pe,k,s+i De the first 3« elements of L(s). For all y e Fe>ktS+x -

Fe,k,s we will add y to T at stage 5 + 1, and for all w e Pe,k,s+i ~ Pe,k,s

we will add w to f at stage s+l. Note that x $ Fetk¡s+X. (We were forced

to dump for e and k by x.)

Case c. x e Peik>s, i < 2e + k, k has not been e-injured by stage s +

1, x e Vi>s+X - V¡>s, and either v(2e + k, x, s) ^ vek<s or there exist

y, z such that y ^ z, ve k s = v(2e + k, z, s) = v(2e + k, y, s), y e

Feks, and z e Fetk¡s. Then let z be the least element of Fe>k>s such that

u(2e + k, x, s) = v(2e + k, z, s). Place z into Vi<s+X.

Case d. x € Pe>kt,, i < 2e + k, k has not been e-injured by stage j + 1.

Je e V¡iS+\ — Vi<s, u(2e+k, x, s) = veks, and there do not exist y, z suchthat

J'/z. ve,k,s = v(2e + k, z,s) = u(2e'+k,y,s), yeFeJcs,and zeFe<k¡s.

Define L(s) as any of the largest possible sets such that for some (2e + k)-sXaXe

ve,k,s+\ ^^e,k,s, L(s) = {y : v(2e + k, y, s) = Vexk<s+X Ay e Fetk>s} . Define

Lis) = {w : v(A2e + k, w, s) = ue ks+x A w e Pe k s}. Let n and j < 4

be such that 4n + j = |L(s)| = |L(5)| (again by Lemma 8(h) we can assume

|L(i)| = |L(s)|, and as to why « ^ 0, again see Lemma 8(viii)). Let Fejti+i

be the first n elements of Lis), and let ^^,1+1 be the first 3« elements of

Lis). For all y e ^,^,1+1 _ ^e-,*.,* we will add y to T at stage s+l, and for

all w e Pejcs^ - Feks we will add w to T at stage s + 1.

The verification

Lemma 8. For all e, k, s, and all 2e+k-states v, let nie, k, s) be the number

of times we have dumped for e and k by the end of stage s and assume k is

never e-injured by any k' (for k' < k). Let ve,k,s = (2e + k, os, xs) Then :

(i) there exists an x e Feks such that v(2e + k, x, s) = v iff there exists a

y €■ Pe,k,s such that v(2e + k, y, s) = v (hence condition (2) holds);

(ii) for all (2e + k)-states v, if v = uek s then

\{zePetktS:u(2e + k, z,s) = u}\> \{x e Fe,k,s : u(2e + k, x, s) = v}\,

and if v ^ ue k s then

\{z ePe<k¡s :v(2e + k, z,s) = u}\ = \{xeFe¡kiS : u(2e + k, x, s) = v}\;

(iii) for all x e Fetks, if v(2e + k, x, s) = (2e + k, o, x) then o D <7î and
x2rs;

(iv) for all z ePe,k,s> if y(2e + k, z, s) = (2e + k, a, x) then a 2 os and

x2ts;
(v) n, =p(e,k)-n(e,k,s)>0 (recall p(e, k) = 2(2e + k + 1)) ;
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(vi) as = \Fe¡ktS\ > m(e, k)(4q(e, k))"'  (recall that q(e, k) = 22(2e+k+xK

m(e, 0) = 1, and m(e, k) = |Ui-^,^',o : k' < k}\,for k>0);

(vii) bs = \Pe,ktS\ > 3m(e, k)(4q(e, k))n* ; and
(viii) bs - as > m(e, k) (hence condition (1) holds).

Proof. We will prove (i)-(viii) simultaneously by induction on s. Clearly (i)-

(viii) hold at stage 0 ( iVfc.o = (2e + k, 0, 0). Assume the lemma holds for
s. We will show that it holds for s + 1. There are two cases. First assume we

do not dump for e and k at stage s+l. When an element of Feks changes

its state and is not dumped, then exactly one element of Pe¡k¡s also changes

its state to match (see Step 2, Case a). The same holds for Pe k s (see Step 2,

Case c). Since Fe<k<s+X = Fe<k<s and Pe<k,s+\ = Pe.k.s, (i)-(viii) hold.
Assume we dump for e and k at stage s + 1. Then ve¡k!S+\ is the state of

all the elements in L(s), L(s), Fe,k>s+X, and Pe k s+x. We have that either

t7í+i D crs and tí+i 2 *s or os+x 2 os and xs+x d xs (by (iii), (iv), and Step

2). Think of the set of (2e + /c)-states as a partial order with (2e + k, ox, xx) <
(2e + k, a2, x2) iff rji ç a2 and xx Ç x2. A maximal chain has length at most

2(2e+k+l)+l. Therefore, we can only dump for e and k at most 2(2e+k+l)

times, and hence (v) holds. Since as = \Fe>kfS\ > m(e, k)(4q(e, k))"s, it

follows that \L(s)\ > 4m(e, k)(4q(e, k))"s+l (ns+x = ns - 1 and recall q(e, k)

is the number of (2e+A:)-states). Let n and j < 4 besuchthat 4n+j = \L(s)\ =

\L(s)\. Since \Fe<k>s+x\ = n , \Pe,k,,+x\ = 3n and « > m(e, k)(4q(e, k))n»< #

0.    D

It is very easy to show that for all s, Fe>k>s2 FetkiS+x, Pe>k>, 2 Pe,k,s+\ >

x £ Ts iff there exist an e and k such x e Fetk¡s,and z £ Ts iff there exist

an e and k such that z e Pe>k>s. By Lemma 8(i) and since both Fe>k>s and

Pe,k,s are finite and nonincreasing (in size) in s, for all (2e + A:)-states, there

exists an x e Fetk¡00 such that u(2e + k, x) = v iff there exists aye Pe,kt00

such that v(2e + k,y) = v. Hence, &(Ue) = Üe and <&~x(Ve) = Ve is an

isomorphism between [}{Fe^kt00 : e,k < co} = Tand \J{Pe>ki00 : e,k <

co} = f. Hence we have met (R0,).

Clearly, for all n, T\Vn = T\Ü„ = 0, and hence condition (3) of the
Extension Theorem holds. Assume x e Ts+X - Ts. So there exist an e and

k such that x e Fe>k¡s. By Lemma 8(i), there exists a î € Pe,k,s such that

v(2e+k, x, s) = v(2e+k, z, s). Now by either Step 2, Case b; Step 2, Case d;

or Step 1, Case b, z e ts+x - Ts and i/(2e + A:,x,5+l)>iv(2e-(-rC,z,5+l).

Since Fe<ktS is finite and nonincreasing in s, for all v , Dl is infinite implies

there exists a v' < v such that Djf, is infinite, and hence condition (5) of the
Extension Theorem holds. Similar reasoning shows that condition (4) of the

Extension Theorem holds. Therefore, 0(C/e) = Ue and &~x(Ve) = Ve is an

effective automorphism and 0(T) = T.

We will now show (Pe) is met.

Lemma 9. Assume that Xxlims-,w{e}(x, s) is a permutation (otherwise, (Pe) is

already met). For all k :

(i) for all m, there is an sm such that t(e, k, sm) > m ;

(ii) there is a stage s such that, after stage s, k never e-injures any k' > k;
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(iii) there is an I > k such that Fejt00 ^ 0 and Fej^oo^0; and

(iv)   (Pe) is met.

Proof, (i) Assume that for some stage s', t(e, k, s') = m . Let s > s' be such

that s >k, e, and for all z e Peko, {e}s(z, m) [ . If t(e, k, s) = m , at stage

s+1 either Case a or Case b of Step 1 will apply. Therefore, t(e, k, s+l) > m .

(ii) Let m be such that for all z e Pe,k,o> f°r all s > m, {e}(z, m) =
{e}(z, s). Let s >sm be such that we never dump for e and k after stage s

( s exists by Lemma 8(v)). Step 1, Case b may only be applied once after stage

s (the action that causes the e-injuries only takes place in Step 1, Case b).
(iii) By Lemma 8(vi), Lemma 8(vii), and Step 1, Case b, we know that

Fe,k',00 = 0 iff Pe,k' ,00 = 0 iff k' was e-injured by some k < k'. Therefore,

Fe,o,oo ¥" 0- Once k is e-injured, k will never e-injure any k' > k. If there

are finitely many stages s such that some k e-injures at stage s, then almost

all Fe!koo and Pe,k,<x are nonempty. Otherwise, there are infinitely many

stages s such that some k e-injures at stage s, but no kx < k e-injures at

any stage greater than s. For each such s, Fe>s+i,oo ¥= 0 and Pe>s+x,<» ̂  0 .

(iv) Let p(x) = limJ_(U{e}(x, s). There are two cases, namely: If there are

infinitely many Je e IJi^fc.cx-. : k < co} such that p(x) e U^, then Q>(lf2e) =

Ûie ¥"* P~l(U2e). Otherwise, there exists an infinite subset Z of (Ui-^è./t.cx) •

k < co} n F2(,)such that p(Z) n (F2e U T) = 0, and hence í>(F2í. U T) =*

(VigUti^p-^KuT).   D

Note that we have not produced two effectively automorphic r.e. sets T,

f such that for any automorphism 4* of W* which can be induced by a A2-

permutation *¥(T) ¿* T (although ®(T) = f and <P is not induced by a A2-

permutation, there may be another automorphism ¥ such that Y is induced

by a A2-permutation and H'(T) =* f). In fact, we believe that it may be the
case that all of the known applications of the Extension Theorem to a standard

skeleton have produced automorphisms or isomorphisms that are induced by

A2-permutations. For example, consider Maass's result [Ma] that all co-infinite

low promptly simple sets are effectively automorphic. We conjecture that these

effective automorphisms can be induced by A2-permutations. However, we also

conjecture that there is a modification of the standard Extension Machinery (as
in [So2, XV.6]) so that the resulting automorphism or isomorphism cannot be

induced by a A2-permutation and there are two effectively automorphic r.e.

which are not automorphic by any automorphism of &* induced by a A2-

permutation.
We will end with two questions. Is there an effective automorphism which is

only induced by a permutation of degree 0" ? Is there a noneffective automor-

phism which is induced by a permutation whose degree is less than 0" ?
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