A converse of the volume-mean-value property for invariantly harmonic functions
HTML articles powered by AMS MathViewer
- by Joaquim Bruna and Jacqueline Detraz
- Proc. Amer. Math. Soc. 122 (1994), 1029-1034
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209418-8
- PDF | Request permission
Abstract:
It is shown that the balls are the only domains having the mean value property with respect to the invariantly harmonic functions in the unit ball of ${\mathbb {C}^n}$.References
- Patrick Ahern, Manuel Flores, and Walter Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. MR 1203459, DOI 10.1006/jfan.1993.1018
- D. H. Armitage and M. Goldstein, The volume mean-value property of harmonic functions, Complex Variables Theory Appl. 13 (1990), no. 3-4, 185–193. MR 1039156, DOI 10.1080/17476939008814389
- Joaquim Bruna, A uniqueness theorem for invariantly harmonic functions in the unit ball of $\textbf {C}^n$, Publ. Mat. 36 (1992), no. 2A, 421–426 (1993). MR 1209812, DOI 10.5565/PUBLMAT_{3}62A92_{0}6
- Bernard Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 140700, DOI 10.1090/S0002-9939-1962-0140700-0
- Ü. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311–312. MR 320348, DOI 10.1112/blms/4.3.311
- Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271–355 (French). MR 86990
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594 H. Shapiro, private communciation, 1993.
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 1029-1034
- MSC: Primary 31B05; Secondary 32A99
- DOI: https://doi.org/10.1090/S0002-9939-1994-1209418-8
- MathSciNet review: 1209418