Hardy inequalities and imbeddings in domains generalizing $C^ {0,\lambda }$ domains
HTML articles powered by AMS MathViewer
- by Andreas Wannebo
- Proc. Amer. Math. Soc. 122 (1994), 1181-1190
- DOI: https://doi.org/10.1090/S0002-9939-1994-1211593-6
- PDF | Request permission
Abstract:
Sufficient conditions for Hardy inequalities in a domain are studied together with related imbedding inequalities. The weights are nonnegative monotone functions of the distance to the boundary, and the domains are a generalization of ${C^{0,\lambda }}$ domains, obtained by replacing the power function in the definition with a general nondecreasing one.References
- Antonio Avantaggiati, Spazi di Sobolev con peso ed alcune applicazioni, Boll. Un. Mat. Ital. A (5) 13A (1976), no. 1, 1–52 (Italian). MR 423064
- J. Scott Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405–408. MR 523580, DOI 10.4153/CMB-1978-071-7
- Petr Gurka and Bohumír Opic, Continuous and compact imbeddings of weighted Sobolev spaces. I, Czechoslovak Math. J. 38(113) (1988), no. 4, 730–744. MR 962916, DOI 10.21136/CMJ.1988.102269
- Bohumír Opic and Petr Gurka, Continuous and compact imbeddings of weighted Sobolev spaces. II, Czechoslovak Math. J. 39(114) (1989), no. 1, 78–94 (English, with Russian and Czech summaries). MR 983485, DOI 10.21136/CMJ.1989.102280 —, Continuous and compact imbeddings of weighted Sobolev space. III, preprint, Československá Akademie Věd, Matematický Ústav.
- Toshio Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ. 29 (1989), no. 3, 365–403. MR 1021144, DOI 10.1215/kjm/1250520216
- Jan Kadlec and Alois Kufner, Characterization of functions with zero traces by integrals with weight functions. I, Časopis Pěst. Mat. 91 (1966), 463–471 (English, with Czech, Russian and German summaries). MR 0212559, DOI 10.21136/CPM.1966.117586
- Alois Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. Translated from the Czech. MR 802206
- Alois Kufner and Anna-Margarete Sändig, Some applications of weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 100, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987. With German, French and Russian summaries. MR 926688 V. G. Maz’ja, Sobolev spaces, Springer, New York, 1985. B. Muckenhaupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31-38.
- Jindřich Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 305–326 (French). MR 163054 B. Opic and A. Kufner, Some inequalities in weighted Sobolev space, Constructive Theory of Functions ’84, Sofia, 1984, pp. 644-648.
- Edward W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Mathematics, vol. 1074, Springer-Verlag, Berlin, 1984. MR 757718, DOI 10.1007/BFb0101268
- Giuseppe Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. (4) 2 (1969), 622–631. MR 0255751
- Andreas Wannebo, Hardy inequalities, Proc. Amer. Math. Soc. 109 (1990), no. 1, 85–95. MR 1010807, DOI 10.1090/S0002-9939-1990-1010807-1 —, Aspects of Sobolev space theory. I (in preparation).
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 1181-1190
- MSC: Primary 46E35; Secondary 26D10
- DOI: https://doi.org/10.1090/S0002-9939-1994-1211593-6
- MathSciNet review: 1211593