On the Jacobian of the Klein curve
HTML articles powered by AMS MathViewer
- by Despina T. Prapavessi
- Proc. Amer. Math. Soc. 122 (1994), 971-978
- DOI: https://doi.org/10.1090/S0002-9939-1994-1212286-1
- PDF | Request permission
Abstract:
Its is known that the Jacobian J of the Klein curve is isogenous to ${{\mathbf {E}}^3}$ for a certain elliptic curve E. We compute explicit equations for E and prove that J is in fact isomorphic to ${{\mathbf {E}}^3}$. We also identify the subgroup of J generated by the image of the Weierstrass points of the curve under an Albanese embedding, and we show that it is isomorphic to ${\mathbf {Z}}/2{\mathbf {Z}} \times {({\mathbf {Z}}/7{\mathbf {Z}})^3}$.References
- Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. MR 782557, DOI 10.2307/1971194
- Robert F. Coleman, Torsion points on abelian étale coverings of $\textbf {P}^1-\{0,1,\infty \}$, Trans. Amer. Math. Soc. 311 (1989), no. 1, 185–208. MR 974774, DOI 10.1090/S0002-9947-1989-0974774-5
- Ralph Greenberg, On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1980/81), no. 3, 345–359. MR 607375
- Benedict H. Gross and David E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), no. 3, 201–224. MR 491708, DOI 10.1007/BF01403161 F. Klein, Uber die Transformation siebenter Ordhang der elliptischen Functionen, Gesammelte Math. Abhandlungen III, vol. 84, Springer, Berlin, 1923.
- Neal Koblitz and David Rohrlich, Simple factors in the Jacobian of a Fermat curve, Canadian J. Math. 30 (1978), no. 6, 1183–1205. MR 511556, DOI 10.4153/CJM-1978-099-6
- Serge Lang, Complex multiplication, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 255, Springer-Verlag, New York, 1983. MR 713612, DOI 10.1007/978-1-4612-5485-0
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 971-978
- MSC: Primary 14H40; Secondary 14H45, 14H52
- DOI: https://doi.org/10.1090/S0002-9939-1994-1212286-1
- MathSciNet review: 1212286