Some estimates of Kobayashi metric in the normal direction
HTML articles powered by AMS MathViewer
- by Siqi Fu
- Proc. Amer. Math. Soc. 122 (1994), 1163-1169
- DOI: https://doi.org/10.1090/S0002-9939-1994-1231034-2
- PDF | Request permission
Abstract:
In this paper, we study the behavior of the Kobayashi metric in the normal direction near a Levi-pseudoconvex boundary point of a smoothly bounded domain without assuming global pseudoconvexity. As a corollary, we obtain a characterization of pseudoconvexity by the rate of the growth of the Kobayashi metric in the normal direction.References
- David W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. MR 978601, DOI 10.1007/BF01215657
- Steven G. Krantz, The boundary behavior of the Kobayashi metric, Rocky Mountain J. Math. 22 (1992), no. 1, 227–233. MR 1159955, DOI 10.1216/rmjm/1181072807
- Jeffery D. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math. (2) 136 (1992), no. 2, 339–360. MR 1185122, DOI 10.2307/2946608
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 1163-1169
- MSC: Primary 32H15
- DOI: https://doi.org/10.1090/S0002-9939-1994-1231034-2
- MathSciNet review: 1231034