Two-generator cable knots are tunnel one
HTML articles powered by AMS MathViewer
- by Steven A. Bleiler
- Proc. Amer. Math. Soc. 122 (1994), 1285-1287
- DOI: https://doi.org/10.1090/S0002-9939-1994-1242075-3
- PDF | Request permission
Abstract:
A two-generator cable knot exterior is a genus two handlebody with a single two-handle attached.References
- Robert Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1976. MR 0466344
- Bradd Clark, The Heegaard genus of manifolds obtained by surgery on links and knots, Internat. J. Math. Math. Sci. 3 (1980), no. 3, 583–589. MR 582900, DOI 10.1155/S0161171280000440
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no. 2, 237–300. MR 881270, DOI 10.2307/1971311
- Mario Eudave Muñoz, On nonsimple $3$-manifolds and $2$-handle addition, Topology Appl. 55 (1994), no. 2, 131–152. MR 1256216, DOI 10.1016/0166-8641(94)90114-7
- C. McA. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), no. 2, 687–708. MR 682725, DOI 10.1090/S0002-9947-1983-0682725-0
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- Yoav Moriah, A note on satellites and tunnel number, Kobe J. Math. 8 (1991), no. 1, 73–79. MR 1134706 W. Magus, A. Karass, and D. Solitar, Combinatorial group theory, Interscience, New York, London, and Sydney, 1966.
- Kanji Morimoto and Makoto Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991), no. 1, 143–167. MR 1087243, DOI 10.1007/BF01446565 F. Norwood, Every one relator knot is prime, preprint, 1979.
- F. H. Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982), no. 1, 143–147. MR 663884, DOI 10.1090/S0002-9939-1982-0663884-7
- Martin Scharlemann, Tunnel number one knots satisfy the Poenaru conjecture, Topology Appl. 18 (1984), no. 2-3, 235–258. MR 769294, DOI 10.1016/0166-8641(84)90013-0
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 122 (1994), 1285-1287
- MSC: Primary 57M25; Secondary 57M05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1242075-3
- MathSciNet review: 1242075