On the depth of the associated graded ring
HTML articles powered by AMS MathViewer
- by Anna Guerrieri
- Proc. Amer. Math. Soc. 123 (1995), 11-20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1211580-9
- PDF | Request permission
Abstract:
Let (R, m) be a Cohen-Macaulay local ring of positive dimension d, let I be an $m -$ primary ideal of R. In this paper we individuate some conditions on I that allow us to determine a lower bound for depth ${\text {gr}_I}(R)$. It is proved that if $J \subseteq I$ is a minimal reduction of I such that $\lambda ({I^2} \cap J/IJ) = 2$ and ${I^n} \cap J = {I^{n - 1}}J$ for all $n \geq 3$, then depth ${\text {gr}_I}(R) \geq d - 2$; let us remark that $\lambda$ denotes the length function.References
- Anna Guerrieri, On the depth of the associated graded ring of an $m$-primary ideal of a Cohen-Macaulay local ring, J. Algebra 167 (1994), no. 3, 745–757. MR 1287068, DOI 10.1006/jabr.1994.1210
- Sam Huckaba, Reduction numbers for ideals of higher analytic spread, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 49–57. MR 886434, DOI 10.1017/S0305004100067037
- Craig Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), no. 2, 293–318. MR 894879, DOI 10.1307/mmj/1029003560
- Irving Kaplansky, $R$-sequences and homological dimension, Nagoya Math. J. 20 (1962), 195–199. MR 175955, DOI 10.1017/S0027763000023710
- Thomas Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal, J. London Math. Soc. (2) 40 (1989), no. 1, 1–8. MR 1028910, DOI 10.1112/jlms/s2-40.1.1
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
- Judith D. Sally, Reductions, local cohomology and Hilbert functions of local rings, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 231–241. MR 693638
- Judith D. Sally, Hilbert coefficients and reduction number $2$, J. Algebraic Geom. 1 (1992), no. 2, 325–333. MR 1144442 —, Ideals whose Hilbert function and Hilbert polynomial agree at $n = 1$, preprint.
- Judith D. Sally, Numbers of generators of ideals in local rings, Marcel Dekker, Inc., New York-Basel, 1978. MR 0485852
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
- Giuseppe Valla, On form rings which are Cohen-Macaulay, J. Algebra 58 (1979), no. 2, 247–250. MR 540637, DOI 10.1016/0021-8693(79)90159-5
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892, DOI 10.1017/S0027763000018225
- Wolmer V. Vasconcelos, Hilbert functions, analytic spread, and Koszul homology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 401–422. MR 1266195, DOI 10.1090/conm/159/01520
- Yinghwa Wu, Reduction numbers and Hilbert polynomials of ideals in higher-dimensional Cohen-Macaulay local rings, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 47–56. MR 1131477, DOI 10.1017/S0305004100075149
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 11-20
- MSC: Primary 13A30; Secondary 13C15, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1211580-9
- MathSciNet review: 1211580