Volume densities with the mean value property for harmonic functions
HTML articles powered by AMS MathViewer
- by W. Hansen and I. Netuka
- Proc. Amer. Math. Soc. 123 (1995), 135-140
- DOI: https://doi.org/10.1090/S0002-9939-1995-1213859-3
- PDF | Request permission
Abstract:
On a bounded domain U in ${\mathbb {R}^d}$ containing the origin, probability measures $\mu$ which have a density w with respect to Lebesgue measure and satisfy $h(0) = \smallint h\;d\mu$ for every bounded harmonic function on U are studied. A domain U is constructed such that $\inf w(U) = 0$ for any such measure. (This solves a problem proposed by A. Cornea.) If, however, U has smooth boundary, then $\mu$ having a density $w \in {\mathcal {C}^\infty }(U)$ which is bounded away from zero on U can be constructed. On the other hand, for arbitrary U it is always possible to choose a strictly positive $w \in {\mathcal {C}^\infty }(U)$ tending to zero at $\partial U$.References
- J. Bliedtner and W. Hansen, Potential theory, Universitext, Springer-Verlag, Berlin, 1986. An analytic and probabilistic approach to balayage. MR 850715, DOI 10.1007/978-3-642-71131-2
- Gustave Choquet and Jacques Deny, Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques, Bull. Soc. Math. France 72 (1944), 118–140 (French). MR 13496, DOI 10.24033/bsmf.1357
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Leopold Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11–18. MR 0136751
- Avner Friedman and Walter Littman, Functions satsifying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167–180. MR 151628, DOI 10.1090/S0002-9947-1962-0151628-9
- Adriano M. Garsia, A note on the mean value property, Trans. Amer. Math. Soc. 102 (1962), 181–186. MR 151629, DOI 10.1090/S0002-9947-1962-0151629-0
- Rudi Hirschfeld, Sur les fonctions $\mu$-harmoniques dans un espace de mesure localement compact, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A174–A176 (French). MR 192069
- Emmanuel P. Smyrnélis, Mesures normales et fonctions harmoniques, Bull. Sci. Math. (2) 95 (1971), 197–207 (French). MR 294681
- Kjell-Ove Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), 17–37 (1968). MR 239264, DOI 10.7146/math.scand.a-10841
- Lawrence Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339–352. MR 335835, DOI 10.1007/BF02764713
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 135-140
- MSC: Primary 31A05; Secondary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1213859-3
- MathSciNet review: 1213859