## Volume densities with the mean value property for harmonic functions

HTML articles powered by AMS MathViewer

- by W. Hansen and I. Netuka
- Proc. Amer. Math. Soc.
**123**(1995), 135-140 - DOI: https://doi.org/10.1090/S0002-9939-1995-1213859-3
- PDF | Request permission

## Abstract:

On a bounded domain*U*in ${\mathbb {R}^d}$ containing the origin, probability measures $\mu$ which have a density

*w*with respect to Lebesgue measure and satisfy $h(0) = \smallint h\;d\mu$ for every bounded harmonic function on

*U*are studied. A domain

*U*is constructed such that $\inf w(U) = 0$ for any such measure. (This solves a problem proposed by A. Cornea.) If, however,

*U*has smooth boundary, then $\mu$ having a density $w \in {\mathcal {C}^\infty }(U)$ which is bounded away from zero on

*U*can be constructed. On the other hand, for arbitrary

*U*it is always possible to choose a strictly positive $w \in {\mathcal {C}^\infty }(U)$ tending to zero at $\partial U$.

## References

- J. Bliedtner and W. Hansen,
*Potential theory*, Universitext, Springer-Verlag, Berlin, 1986. An analytic and probabilistic approach to balayage. MR**850715**, DOI 10.1007/978-3-642-71131-2 - Gustave Choquet and Jacques Deny,
*Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques*, Bull. Soc. Math. France**72**(1944), 118–140 (French). MR**13496**, DOI 10.24033/bsmf.1357 - Björn E. J. Dahlberg,
*Estimates of harmonic measure*, Arch. Rational Mech. Anal.**65**(1977), no. 3, 275–288. MR**466593**, DOI 10.1007/BF00280445 - Leopold Flatto,
*Functions with a mean value property*, J. Math. Mech.**10**(1961), 11–18. MR**0136751** - Avner Friedman and Walter Littman,
*Functions satsifying the mean value property*, Trans. Amer. Math. Soc.**102**(1962), 167–180. MR**151628**, DOI 10.1090/S0002-9947-1962-0151628-9 - Adriano M. Garsia,
*A note on the mean value property*, Trans. Amer. Math. Soc.**102**(1962), 181–186. MR**151629**, DOI 10.1090/S0002-9947-1962-0151629-0 - Rudi Hirschfeld,
*Sur les fonctions $\mu$-harmoniques dans un espace de mesure localement compact*, C. R. Acad. Sci. Paris Sér. A-B**262**(1966), A174–A176 (French). MR**192069** - Emmanuel P. Smyrnélis,
*Mesures normales et fonctions harmoniques*, Bull. Sci. Math. (2)**95**(1971), 197–207 (French). MR**294681** - Kjell-Ove Widman,
*Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations*, Math. Scand.**21**(1967), 17–37 (1968). MR**239264**, DOI 10.7146/math.scand.a-10841 - Lawrence Zalcman,
*Mean values and differential equations*, Israel J. Math.**14**(1973), 339–352. MR**335835**, DOI 10.1007/BF02764713

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 135-140 - MSC: Primary 31A05; Secondary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1213859-3
- MathSciNet review: 1213859