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THE WEAK STABILITY OF THE POSITIVE FACE IN Lx

ZHIBAO HU

(Communicated by Dale Alspach)

Abstract. Let F be the positive face of the unit ball of L'[0, 1]. We show

that F is weakly stable in the sense that the midpoint map <Pi/2 : F x F -* F ,

with ®X/2(f, g) = \{f + g), is open with respect to the weak topology. This

weak stability of the set F is the reason behind the fact that the notions

of "huskable" and "strongly regular" operators coincide for operators from

L'[0, 1] to a Banach space X. We prove this stability by showing that if

f\,f2eF, A € (0, 1), e > 0, and ô > max{2e/A, 2«/(l - A)} , then

Wpj(fx) + (\-X)Vpj{f2) D VP¡e[Xfx +(1 -X)f2],

where P = {Ax,... , A„] is a finite positive partition of [0, 1] and

VpM) = lgeF: ¿ jA(f-g)(t)dß{t) <e\

for any / in F . We construct an example showing that for any 0 < A < 1

there are functions /> and f2 in F such that if 0 < e < 2 min{A, 1 - A} and

0 < ô < max{e/A, e/(l - A)} , then

WPti(fx) + (l-k)VPyi(f2) 2 Vp>tm + <l-X)f2).

Thus the "formula" that AKP,«,(/,) + (1 - X)Vp,e(f2) = Vp,e(Xfx + (1 - X)f2)
given by Ghoussoub et al. in Mem. Amer. Math. Soc, vol. 70, no. 378, which

is used there to establish the weak stability of F , is false.

Let C be a convex subset of some topological vector space X. C is said to
be stable if the midpoint map O./2 : C x C -> C, with Q>x¡2(x ,y) = \(x + y),
is open. If X is a Banach space and C is stable with respect to the weak
topology, then we say that C is weakly stable. It was proved in [ 1, Proposition

1.1] that if C is stable and X is locally convex, then for any X in [0, 1] the

map ®x: C x C —» C, with <P^(x, y) = Xx + (1 + X)y , is also open. Note that
the conclusion holds without assuming X to be locally convex. Hence convex
combinations of nonempty relatively open subsets of a stable set are relatively

open.
Throughout, the triple (Yl, Z, p) will denote the Lebesgue measure space on

[0,1] and L1 will be the Banach space of all (equivalence classes of) Lebesgue

integrable functions on [0, 1] equipped with the norm ||/||i = /n |/(r)| dp(t).
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and

n

We shall denote by F the positive face of the unit ball of Lx, i.e.,

F = {/eL1:/>0and||/||1 = l}.

Let P = {Ax, ... , An} be a finite positive partition of Yl and e > 0. Define,

for feF,

VpM) = \geF: y\[ (f-g)dp

Jf) = igeF: ¿|^(/-»?)^|<4.

As pointed out in [2] the sets Pj? e(f) form a relative weak neighborhood base

of / in F when P runs through the finite positive partitions of Yl and e runs

through (0, 1].
The weak stability of the face F is the reason behind the fact that the no-

tions of "huskable" and "strongly regular" operators coincide for operators from

L'[0, 1] to a Banach space X (cf. [2, Theorem IV.10]). In [2], the weak sta-
bility of F is established using the following lemma.

Lemma 1 [2, Lemma IV.4]. If fx, f2 e F and Xe[0, I], then

Wp,e(fi) + (l-*)VpM2) = Vp,e(Xfx+(l-X)f2).

However, the formula in this lemma need not hold as seen by the following

counterexample (Example 3). Consequently, it is important to establish that F
is weakly stable without using this formula. Theorem 4 gives a correct variant of
the above lemma which is strong enough to conclude the desired weak stability

result. We will use the following lemma in Example 3.

Lemma 2 [2, Lemma IV. 3]. For feF and e>0, the following holds true:

VPM) = [Vp,o(f) + eBLi]DF,

where BL\  is the closed unit ball of Lx.

Example 3. Fix X e (0, 1). Let Ax = [0,X), A2 = [X, I], fx = \xa, , h =
ttj,Xa2 , and P = {Ax, A2}. Fix 0 < e < 2min{A, 1 - X}, and let g =

JxXa, - 2rfzr)XA2 and g' = -g. It is clear that fx, f2 are in F and that

A/i + (l-W2 + S and Xfx + (l-X)f2 + g' are in VPtt(kfx + (l -X)f2). Let p =
max{ j, -rrj} . The proof below shows that if 0 < S < pe then Xfx +(l-X)f2+g

or Xfx + (1 - X)f2 + g' does not belong to XVP>s(f\) + (1 - X)VPtS(f>). In
particular, if 0 < ô < pe then

WPtS(fi) + (l-X)VriS(f2) 1> VP,e(Xfx+(l-X)f2).

Thus by taking ô = s we see that [2, Lemma IV.4] need not hold.

Proof. Suppose that for some ô > 0 both Xfx + ( I - X)f2 + g and Xfx +
(I - A)/2 + g' are in XVP s(fx) + (1 - X)VP s(f2). We will show that S > pe .

Since Xfx + (1 - X)f2 + ge XVPJ(fx) + (1 - X)VPJ(f2), by Lemma 2 there
are functions h¡ e VPy0(f) and g¡ e SBV such that h¡ + g¡ e VP¡s(f¡) and

A/i + (1 - A)/2 + g = X(hx +gx) + (l- X)(h2 + g2).
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Note that /z, and h¡ + g¡ are in F and that JA h¡dp = JA fidp = o¡j for

i, j €{1,2}. Thus Ja gidp = 0. Furthermore, almost everywhere on A2 , we

have that hx = 0 and so gx > 0. It follows that

(l-X)-£-= j [Xfx + (l-X)f2 + g]dp

= [ [Khx + gx) + (\-X)(h2 + g2)]dp
Ja2

= (l-X) + X¡ gxdp + (l-X) [ g2dp
Ja2 Ja2

and so

- /  g2dp=      g2dp =
Ja, Ja-, 2(1-A)     l-X \  8\dp

Ja,
<

2(1-A)"

Thus j-rj < \\g2W1 < S . Similarly f < ||g.||i < ô . Therefore, S > pe .

However, one can still conclude the weak stability of F from the following

variant of [2, Lemma IV.4].

Theorem 4. Let fx, f2 be in F. If X e (0, 1), e > 0, and ô > max{f , fa},
then

Wr,s(f\) + (1 - WAfi) D VPtt(Xfx + (1 -X)f2).
Proof. Let {Ax... , An} be the sets of the partition P. Let a, = ¡A /■ dp and

bi - ¡A fidp for 1 < i <n. Let g be any function in VP<e(Xfx + (I -X)f2).
Put

ai „_j    o bi
a¡ =

Xa¡ + (1 -X)bi

o
o

and   ßi =
Afl, + (1-A)6/'

observing the convention that § is 1. Note that 0 < a¡ < j and 0 < ß, < y=j

Let

hi(-) = y<*ig(-)XA,    and   h2(.) = yßig(.)XAl.

i=\ (=1

Clearly hi > 0 and Xhx + (1 - X)h2 = g.   Thus, without loss of generality,
Pi||i>l. Let

¿?i
\\h

and   g2
1

un l-X g l-X g\

Clearly gx e F and hx > gx > 0 and Xgx+(l- X)g2 = g. Hence X(hx - gx) =
(1 - X)(g2 - h2) and so g2 > h2 > 0, thus g2 e F . To complete the proof we
need only to show that £"=11 JA(fj - gj)dp\<ô for j = I and 2 .

Toward this, first note that

y\     (f-hx)dp = y\ai-a¡ /  gdp =yotj Xai + (l-X)bi- /  gdp
i=i\JA, £(\ Ja, % Ja,

= yoci\f [Xfx + (l-X)f2-g]dp
._! \J A,
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Likewise, £?=i | ¡A(f2 - h2) dp\<-fc. Thus

y\! (h-gx)dp  =y  f h
i=\ \Jaí i=\   JAi

dp
11*1 Hi

= |||A,||,-l| = |/A,rf/í- i fxdp
\Ja Ja

<y Í(f-hx)(t)dp(t)
7~r Ja,

l|Aun
»Aun

<
l-A

;=i    A<

and so

"  I i X     "  | /*
J]  / (hi-g2)dp =-—rV      (hx-gx)dp
,=,IA 1-yl£íl-u

Hence £"=11 /^.(/y - gj)dp\ < ö for j = 1 and 2, as needed, and the proof

is complete.

Corollary 5. The positive face F is weakly stable.

Proof. Suppose Vx and V2 are two nonempty relatively weakly open subsets

of F. Let f be any point in V¡. Since the set Vp E(f) forms a relative

weak neighborhood base of f in F, when P runs through the finite positive

partitions of Yl and e runs through (0, 1], there exist partitions P» and P2

and positive numbers Sx  and ô2 such that  Vß ¿(f) C V¡.   Let 0 < ô <

min{r5i, S2}, 0<e<5<5, and let P be a finer partition of Yl than Pi and

P2 . By Theorem 4, we have

\VP,s(f\) + \Vp,ô(h)?VrA\f\ + \h)-

Since

\vx + \v2d \vj!uSi(fi) + \vj!1>Sl(f2) D ífP)<5(/o + ^P>><5(/2),

^,e(±/1 + ±/2)D^0£(±/i + I/2),

the set \VX + \V2 is a weak neighborhood of 5/1 + ^ and so \VX + \V2 is
weakly open. Therefore, F is weakly stable, and the proof is complete.
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