On compactness of composition operators in Hardy spaces of several variables
HTML articles powered by AMS MathViewer
- by Song-Ying Li and Bernard Russo
- Proc. Amer. Math. Soc. 123 (1995), 161-171
- DOI: https://doi.org/10.1090/S0002-9939-1995-1213865-9
- PDF | Request permission
Abstract:
Characterizations of compactness are given for holomorphic composition operators on Hardy spaces of a strongly pseudoconvex domain.References
- J. A. Cima and W. R. Wogen, Unbounded composition operators on $H^2(B_2)$, Proc. Amer. Math. Soc. 99 (1987), no. 3, 477–483. MR 875384, DOI 10.1090/S0002-9939-1987-0875384-4
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Michael Christ and Daryl Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), no. 3, 547–598. MR 757952, DOI 10.1215/S0012-7094-84-05127-5
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Carl C. Cowen, Composition operators on Hilbert spaces of analytic functions: a status report, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 131–145. MR 1077383, DOI 10.1090/pspum/051.1/1077383 N. Dunford and J. T. Schwartz, Linear operator, Part I, Interscience, New York, 1958.
- Lars Hörmander, $L^{p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78. MR 234002, DOI 10.7146/math.scand.a-10821
- Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- F. Jafari, Carleson measures in Hardy and weighted Bergman spaces of polydiscs, Proc. Amer. Math. Soc. 112 (1991), no. 3, 771–781. MR 1039533, DOI 10.1090/S0002-9939-1991-1039533-0
- Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622
- Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310
- Steven G. Krantz and Song-Ying Li, A note on Hardy spaces and functions of bounded mean oscillation on domains in $\textbf {C}^n$, Michigan Math. J. 41 (1994), no. 1, 51–71. MR 1260608, DOI 10.1307/mmj/1029004914 —, On decomposition theorems for Hardy spaces on domains in ${{\mathbf {C}}^n}$ and applications, preprint.
- Barbara D. MacCluer, Spectra of compact composition operators on $H^p(B_N)$, Analysis 4 (1984), no. 1-2, 87–103. MR 775548, DOI 10.1524/anly.1984.4.12.87 —, Compact composition operators on ${H^p}({B_N})$, Michigan Math. J. 32 (1985), 237-248.
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 11, 6596–6599. MR 634936, DOI 10.1073/pnas.78.11.6596
- A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő kernels in $\textbf {C}^2$, Ann. of Math. (2) 129 (1989), no. 1, 113–149. MR 979602, DOI 10.2307/1971487
- Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314 D. Sarason, Weak compactness of holomorphic composition operators on ${H^1}$, preprint.
- Joel H. Shapiro and Carl Sundberg, Compact composition operators on $L^1$, Proc. Amer. Math. Soc. 108 (1990), no. 2, 443–449. MR 994787, DOI 10.1090/S0002-9939-1990-0994787-0
- J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$, Indiana Univ. Math. J. 23 (1973/74), 471–496. MR 326472, DOI 10.1512/iumj.1973.23.23041
- E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
- Warren R. Wogen, Composition operators acting on spaces of holomorphic functions on domains in $\textbf {C}^n$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 361–366. MR 1077457, DOI 10.1090/pspum/051.2/1077457
- R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), no. 2, 304–335. MR 791851, DOI 10.1016/0022-1236(85)90007-2
- Barbara D. MacCluer and Joel H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878–906. MR 854144, DOI 10.4153/CJM-1986-043-4
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 161-171
- MSC: Primary 47B38; Secondary 32A35, 47B07
- DOI: https://doi.org/10.1090/S0002-9939-1995-1213865-9
- MathSciNet review: 1213865