## Triangular UHF algebras over arbitrary fields

HTML articles powered by AMS MathViewer

- by R. L. Baker
- Proc. Amer. Math. Soc.
**123**(1995), 67-79 - DOI: https://doi.org/10.1090/S0002-9939-1995-1215025-4
- PDF | Request permission

## Abstract:

Let*K*be an arbitrary field. Let $({q_n})$ be a sequence of positive integers, and let there be given a family $\{ {\Psi _{nm}}|n \geq m\}$ of unital

*K*-monomorphisms ${\Psi _{nm}}:{T_{{q_m}}}(K) \to {T_{{q_n}}}(K)$ such that ${\Psi _{np}}{\Psi _{pm}} = {\Psi _{nm}}$ whenever $m \leq n$, where ${T_{{q_n}}}(K)$ is the

*K*-algebra of all ${q_n} \times {q_n}$ upper triangular matrices over

*K*. A

*triangular UHF*(

*TUHF*)

*K-algebra*is any

*K*-algebra that is

*K*-isomorphic to an algebraic inductive limit of the form $\mathcal {T} = \lim \limits _ \to ({T_{{q_n}}}(K);{\Psi _{nm}})$. The first result of the paper is that if the embeddings ${\Psi _{nm}}$ satisfy certain natural dimensionality conditions and if $\mathcal {S} = \lim \limits _ \to ({T_{{p_n}}}(K);{\Phi _{nm}})$ is an arbitrary TUHF

*K*-algebra, then $\mathcal {S}$ is

*K*-isomorphic to $\mathcal {T}$, only if the supernatural number, $N[({p_n})]$, of $({q_n})$ is less than or equal to the supernatural number, $N[({p_n})]$, of $({p_n})$. Thus, if the embeddings ${\Phi _{nm}}$ also satisfy the above dimensionality conditions, then $\mathcal {S}$ is

*K*-isomorphic to $\mathcal {T}$, only if $N[({p_n})] = N[({q_n})]$. The second result of the paper is a nontrivial "triangular" version of the fact that if

*p, q*are positive integers, then there exists a unital

*K*-monomorphism $\Phi :{M_q}(K) \to {M_p}(K)$, only if $q|p$. The first result of the paper depends directly on the second result.

## References

- Donald J. Albers, Gerald L. Alexanderson, and Constance Reid (eds.),
*More mathematical people*, Harcourt Brace Jovanovich, Publishers, Boston, MA, 1990. Contemporary conversations. MR**1143310** - Richard L. Baker,
*Triangular UHF algebras*, J. Funct. Anal.**91**(1990), no. 1, 182–212. MR**1054118**, DOI 10.1016/0022-1236(90)90052-M - Richard L. Baker,
*On certain Banach limits of triangular matrix algebras*, Houston J. Math.**23**(1997), no. 1, 127–141. MR**1688831** - T. S. Blyth,
*Module theory*, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990. An approach to linear algebra. MR**1070710** - J. R. Peters, Y. T. Poon, and B. H. Wagner,
*Triangular AF algebras*, J. Operator Theory**23**(1990), no. 1, 81–114. MR**1054818** - S. C. Power,
*Classification of tensor products of triangular operator algebras*, Proc. London Math. Soc. (3)**61**(1990), no. 3, 571–614. MR**1069516**, DOI 10.1112/plms/s3-61.3.571
—,

*The classification of triangular subalgebras of*${C^ \ast }$-

*algebras*, Bull London Math. Soc.

**22**(1990), 264-272.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 67-79 - MSC: Primary 46K50; Secondary 16S99
- DOI: https://doi.org/10.1090/S0002-9939-1995-1215025-4
- MathSciNet review: 1215025