SEN'S THEOREM ON ITERATION OF POWER SERIES

JONATHAN LUBIN

(Communicated by Lance W. Small)

ABSTRACT. In the group of continuous automorphisms of the field of Laurent series in one variable over a field of characteristic \(p > 0 \), Sen's Theorem describes the rapidity of convergence to the identity of the sequence formed by taking successive \(p \)-th powers of a given element. This paper gives a short proof of Sen's Theorem, utilizing the methods of \(p \)-adic analysis in characteristic zero.

The theorem in question appears in Sen's thesis [Sen], and is concerned with the group \(\mathcal{G}_0,1(\kappa) \) of formal power series in one variable with no constant term, and first degree coefficient equal to 1, over a field \(\kappa \) of characteristic \(p > 0 \), where the group law is composition of series. If we call the variable \(t \), this group is a closed subset of the discrete valuation ring \(\kappa[[t]] \), namely, the set of all \(u(t) \) for which \(u \equiv t \pmod{t^2} \). For the \((t) \)-adic filtration of group \(\mathcal{G}_0,1 \), the successive quotients are isomorphic to the additive group \(\kappa \). Thus if we call \(u^{\circ n} \) the \(n \)-fold iteration of \(u \) with itself, any time that \(u \equiv t \pmod{t^n} \), we necessarily have \(u^{\circ p} \equiv t \pmod{t^{n+1}} \). Sen's Theorem says much more and is best stated in terms of the additive valuation \(v \) of \(\kappa[[t]] \) normalized so that \(v(t) = 1 \). According to the theorem, if \(u^{\circ p} \) is not the identity, then \(v(u^{\circ p}(t) - t) \equiv v(u^{\circ p-1}(t) - t) \pmod{p^n} \). Let us abbreviate notation by setting \(i_u(n) = i(n) : = v(u^{\circ p}(t) - t) \). Sen's Theorem now says that if \(u^{\circ p} \) is not the identity, then \(i(n) \equiv i(n - 1) \pmod{p^n} \).

As examples of this phenomenon, we have, in characteristic 2, if \(u(t) = t + t^4 \), then \(i_u(n) = 2^{n+1} \); if \(u(t) = t + t^4 + t^5 \), then \(i_u(n) = 2^{n+2} \); and if \(u(t) = t + t^3 \), then \(i_u(n) = 1 + 2^{n+1} \). It is easy to see why the first two of these facts hold, since each of \(t + t^4 \) and \(t + t^4 + t^5 \) is an endomorphism of a formal group, and since in a formal-group endomorphism ring, the multiplication comes from substitution of power series. The first-mentioned series is an endomorphism of the additive formal group \(\mathcal{O}(x, y) = x + y \), whose endomorphism ring has characteristic 2, and in that ring \(t + t^4 \) is \(g = 1 + \phi \), \(\phi(t) = t^4 \). The powers \(g^{2^n} \) are

\[
(1 + \phi^{2^n})(t) = t + t^{2^{2^n}}.
\]

Received by the editors September 29, 1992 and, in revised form, April 19, 1993.

1991 Mathematics Subject Classification. Primary 12J25; Secondary 11R37, 54H20.

©1994 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The second-mentioned series is the endomorphism $[5]_M(t)$ of the multiplicative formal group $M(x, y) = x + y + xy$, whose endomorphism ring is isomorphic to the ring \mathbb{Z}_2 of 2-adic integers, and the iterates of $[5](t)$ approach $[1](t) = t$ in the manner claimed because of the congruences $5^{2^n} \equiv 1 \pmod{2^{n+2}}$, $5^{2^n} \not\equiv 1 \pmod{2^{n+3}}$. To see why the 2-power iterates of the last-mentioned series $t + t^3$ approach the identity in the manner claimed is rather more difficult, and for this the reader is referred to [K].

In this note we give a short proof of Sen's Theorem using the methods of p-adic analysis.

Without loss of generality, we may assume that the field κ is perfect. The trick is to lift u in a particular way to a series $U(x)$ in characteristic zero. (The choice of a complete discrete valuation ring v of characteristic zero to serve as constant ring for U is not crucial: the Witt ring $W_{\infty}(\kappa)$ will do.) As usual in p-adic analysis, we pass from the original ground ring v to its integral closure \mathcal{D} in an algebraic closure of the fraction field k of v. Of course, \mathcal{D} is neither Noetherian nor complete, but every series considered will have its coefficients in a finite algebraic extension of k, in which the integer ring is complete and Noetherian. Call \mathfrak{M} the maximal ideal of \mathcal{D}. The number $i(n)$ defined above is now the "Weierstrass degree" of the series $U^{op^*}(t) - t$, and $i(n)$ is thus the number of fixed points in \mathfrak{M} of U^{op^n}, taking account of multiplicity. The idea is to choose the series U so that each periodic point of order dividing p^n has multiplicity at most one in every iterate of U. The existence of such a series will make a proof of Sen's Theorem easy. The note closes with a construction of the series U.

Theorem. Let v be a complete discrete valuation ring of characteristic zero, maximal ideal \mathfrak{m}, and residue field κ of characteristic $p > 0$. Let $U(t)$ be a series in $v[[t]]$ for which $U(0) = 0$, and suppose that n is a positive integer such that $U^{op^n}(t) \not\equiv t \pmod{\mathfrak{m}}$ and all roots of $U^{op^n}(t) - t$ in \mathfrak{M} are simple. Then for all m with $0 < m \leq n$, $i_U(m - 1) \equiv i_U(m) \pmod{pm}$.

Proof. For each $m \geq 1$ let $Q_m(t)$ be defined by

$$Q_m(t) = \frac{U^{op^m}(t) - t}{U^{op^{m-1}}(t) - t}.$$

The quotient is a series in $v[[t]]$ since for any series $f \in v[[t]]$ with $f(0) = 0$ we have $(f(t) - t)(f^{\circ n}(t) - t)$. Put $Q_0(t) = U(t) - t$. Our hypothesis on multiplicities says that no two of the series Q_0, Q_1, ..., Q_n have any roots in common. Thus the set of roots of Q_m in \mathfrak{M} is exactly the set of points of \mathfrak{M} that lie in an orbit of cardinality p^m under the action of U. Since, for $m \geq 1$, the Weierstrass degree of Q_m is $i_U(m) - i_U(m - 1)$, the proof is done.

All the difficulty in Sen's Theorem is pushed into the construction of a lifting of the given $u(t) \in \kappa[[t]]$ to a series $U(t) \in v[[t]]$ of the desired form.

Proposition. Let κ be a field of characteristic $p > 0$, and let u be a series in $\kappa[[t]]$ with $u(t) \equiv t \pmod{t^2}$. If n is an integer such that $u^{op^n}(t) \not\equiv t$, then there is a complete discrete valuation ring (v, \mathfrak{m}) of characteristic zero, such that v/\mathfrak{m} contains κ, and a lifting U of u to $v[[t]]$, such that all the roots of $U^{op^n}(t) - t$ in \mathfrak{M} are simple.
Proof. First we find any complete discrete valuation ring at all, \((\theta_0, m_0)\), whose residue field contains \(\kappa\): the Witt ring of the perfect closure of \(\kappa\) will do. Lift \(u\) in any way to a series \(U_0 \in \theta_0[[t]]\) without constant term. Our strategy is to choose a ring \((\theta, m)\) that is the integer ring of a finite algebraic extension of the fraction field of \(\theta_0\) and modify \(U_0\) by adding a carefully chosen \(\Delta \in \theta^n \theta_0[[t]]\) so that \(U = U_0 + \Delta\) satisfies the desired conditions. We make frequent use of the continuity of the roots of a series over \(\theta\), by which we mean that if \(\xi f(t) \in \theta[[\xi]][[t]]\) and if \(\rho \in m\) is a root of multiplicity \(\mu\) of \(\theta\), then for all \(\alpha\) in a sufficiently high power of \(m\), there are precisely \(\mu\) roots of \(\alpha f',\) counting multiplicity, that correspond to \(\rho\). In particular, when \(f\) is varied slightly in a suitably small open set about \(\theta f\), the multiplicities of roots cannot increase.

We recall also that a fixed point \(\zeta\) of \(f(t)\) has multiplicity greater than 1 if and only if \(f'(\zeta) = 1\) and that \(\zeta\) will be a multiple root of \(f^{\circ r}(t) - t\) if and only if \(f'(\zeta)\) is an \(r\)th root of 1. The last tool used in the proof is the observation that if \(\Delta \in \theta[[t]]\) is a series that vanishes at all roots of \(U_0^{\circ r}(x) - x\) and if \(U = U_0 + \Delta\), then every fixed point of \(U_0^{\circ r}\) is a fixed point of \(U^{\circ r}\). We will modify the original \(U_0\) in this way by increments that successively decrease the multiplicity of each fixed point of \(U^{\circ r}\) to 1. Note that our modified series has only finitely many periodic points of order dividing \(p^n\) since \(U_0^{\circ n}(t) \neq t\).

Now for the details: In case a fixed point \(\zeta\) of \(U\) itself is a fixed point of multiplicity greater than 1 in an iterate, we may assume (after perhaps making a finite extension of the base) that \(\zeta = 0\), so that \(U^{\circ r}(t) - t\) takes the form \(t^e G(t)\), with \(G(0) \neq 0\) and \(e > 1\). The hypothesis on \(U\) is that \(U'(0) = w\) is a root of 1, so we set \(U(t) := U(t) + \xi t G(t)\), which, for small enough nonzero \(\xi\), has \(U'(0) \neq w\), but so close to \(w\) that it cannot be a root of 1. Therefore, no iterate of the new series has a fixed point of multiplicity greater than 1 at 0.

A slightly more complicated situation is the one where \(\zeta\) is a periodic point of order \(p^r\), with \(1 \leq r \leq n\). Call \(\zeta_i := U^{\circ i}(\zeta)\), so that \(\zeta_i \neq \zeta\) if \(0 < i < p^r\). The hypothesis on \(\zeta\) implies that

\[
U^{\circ r}(t) - t = G(t) \prod_{i=0}^{p^r-1} (t - \zeta_i)^{e_0},
\]

where \(G\) is nonzero at all the \(\zeta_i\)'s and where \(e_0 > 1\). We now set \(\Delta(t)\) equal to the series \(G(t)(t - \zeta) \prod_{i \neq 0} (t - \zeta_i)^2\) and set \(U := U + \xi \Delta\). This has among its periodic points of order dividing \(p^n\) the corresponding periodic points of \(U\), and since the hypothesis on \(\zeta\) implies that \(U^{\circ p^r}(\zeta) = w\), a root of 1, we will be done when we show that we can adjust \(\xi\) so that \(\xi U^{\circ p^r}(\zeta)\) is so close to \(w\) that it cannot be a root of 1. We have

\[
\xi U^{\circ p^r}(\zeta) = \prod_{i=0}^{p^r-1} \xi U'(\xi U^{\circ i}(\zeta)) = \xi U'(\zeta) \prod_{i=1}^{p^r-1} \xi U'(\zeta_i)
\]

\[
= (U'(\zeta) + \xi \Delta'(\zeta)) \prod_{i=1}^{p^r-1} U'(\zeta_i) = w + \xi \Delta'(\zeta) \prod_{i=1}^{p^r-1} U'(\zeta_i),
\]

and since we have constructed \(\Delta\) so that \(\Delta'(\zeta) \neq 0\), the proof is done.
References

Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912

E-mail address: ma406000@brownvm.brown.edu