Topology of factored arrangements of lines
HTML articles powered by AMS MathViewer
- by Luis Paris
- Proc. Amer. Math. Soc. 123 (1995), 257-261
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227528-7
- PDF | Request permission
Abstract:
A real arrangement of affine lines is a finite family $\mathcal {A}$ of lines in ${{\mathbf {R}}^2}$. A real arrangement $\mathcal {A}$ of lines is said to be factored if there exists a partition $\Pi = ({\Pi _1},{\Pi _2})$ of $\mathcal {A}$ into two disjoint subsets such that the Orlik-Solomon algebra of $\mathcal {A}$ factors according to this partition. We prove that the complement of the complexification of a factored real arrangement of lines is a $K(\pi ,1)$ space.References
- Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302 (French). MR 422673, DOI 10.1007/BF01406236
- Michael Falk, $K(\pi ,1)$ arrangements, Topology 34 (1995), no. 1, 141–154. MR 1308492, DOI 10.1016/0040-9383(94)E0011-8 M. Falk and M. Jambu, Factorizations and colorings of combinatorial geometries, preprint, 1989.
- Michael Falk and Richard Randell, On the homotopy theory of arrangements, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101–124. MR 894288, DOI 10.2969/aspm/00810101
- Michel Jambu, Fiber-type arrangements and factorization properties, Adv. Math. 80 (1990), no. 1, 1–21. MR 1041881, DOI 10.1016/0001-8708(90)90012-C T. Januszkiewicz and J. Swiatkowski, On the asphericity of plane arrangements, preprint, 1991.
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Hiroaki Terao, Modular elements of lattices and topological fibration, Adv. in Math. 62 (1986), no. 2, 135–154. MR 865835, DOI 10.1016/0001-8708(86)90097-6
- Hiroaki Terao, Factorizations of the Orlik-Solomon algebras, Adv. Math. 91 (1992), no. 1, 45–53. MR 1144343, DOI 10.1016/0001-8708(92)90009-A
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 257-261
- MSC: Primary 52B30; Secondary 55P20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1227528-7
- MathSciNet review: 1227528