A rim-metrizable continuum
HTML articles powered by AMS MathViewer
- by J. Nikiel, L. B. Treybig and H. M. Tuncali
- Proc. Amer. Math. Soc. 123 (1995), 281-286
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260177-3
- PDF | Request permission
Abstract:
A locally connected rim-metrizable continuum is constructed which admits a continuous mapping onto a non rim-metrizable space.References
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779 R. J. Fokkink and L. G. Oversteegen, The geometry of laminations (in preparation).
- G. R. Gordh Jr. and Sibe Mardešić, Characterizing local connectedness in inverse limits, Pacific J. Math. 58 (1975), no. 2, 411–417. MR 385784, DOI 10.2140/pjm.1975.58.411
- J. Grispolakis, J. Nikiel, J. N. Simone, and E. D. Tymchatyn, Separators in continuous images of ordered continua and hereditarily locally connected continua, Canad. Math. Bull. 36 (1993), no. 2, 154–163. MR 1222529, DOI 10.4153/CMB-1993-023-1
- Sibe Mardešić, Images of ordered compacta are locally peripherally metric, Pacific J. Math. 23 (1967), 557–568. MR 221478, DOI 10.2140/pjm.1967.23.557
- J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn, On the rim-structure of continuous images of ordered compacta, Pacific J. Math. 149 (1991), no. 1, 145–155. MR 1099788, DOI 10.2140/pjm.1991.149.145
- J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn, A locally connected rim-countable continuum which is the continuous image of no arc, Topology Appl. 42 (1991), no. 1, 83–93. MR 1135783, DOI 10.1016/0166-8641(91)90034-J H. M. Tuncali, Some generalizations of the Hahn-Mazurkiewicz theorem, Ph.D. Thesis, University of Saskatchewan, Saskatoon, 1989.
- H. Murat Tuncali, Analogues of Treybig’s product theorem, Proc. Amer. Math. Soc. 108 (1990), no. 3, 855–858. MR 931738, DOI 10.1090/S0002-9939-1990-0931738-9
- H. Murat Tuncali, Concerning continuous images of rim-metrizable continua, Proc. Amer. Math. Soc. 113 (1991), no. 2, 461–470. MR 1069694, DOI 10.1090/S0002-9939-1991-1069694-9
- G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320–324. MR 99638, DOI 10.4064/fm-45-1-320-324
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 281-286
- MSC: Primary 54F15; Secondary 54B15, 54C05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260177-3
- MathSciNet review: 1260177