## A rim-metrizable continuum

HTML articles powered by AMS MathViewer

- by J. Nikiel, L. B. Treybig and H. M. Tuncali PDF
- Proc. Amer. Math. Soc.
**123**(1995), 281-286 Request permission

## Abstract:

A locally connected rim-metrizable continuum is constructed which admits a continuous mapping onto a non rim-metrizable space.## References

- Morton Brown,
*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478–483. MR**115157**, DOI 10.1090/S0002-9939-1960-0115157-4 - Ryszard Engelking,
*Topologia ogólna*, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR**0500779**
R. J. Fokkink and L. G. Oversteegen, - G. R. Gordh Jr. and Sibe Mardešić,
*Characterizing local connectedness in inverse limits*, Pacific J. Math.**58**(1975), no. 2, 411–417. MR**385784**, DOI 10.2140/pjm.1975.58.411 - J. Grispolakis, J. Nikiel, J. N. Simone, and E. D. Tymchatyn,
*Separators in continuous images of ordered continua and hereditarily locally connected continua*, Canad. Math. Bull.**36**(1993), no. 2, 154–163. MR**1222529**, DOI 10.4153/CMB-1993-023-1 - Sibe Mardešić,
*Images of ordered compacta are locally peripherally metric*, Pacific J. Math.**23**(1967), 557–568. MR**221478**, DOI 10.2140/pjm.1967.23.557 - J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn,
*On the rim-structure of continuous images of ordered compacta*, Pacific J. Math.**149**(1991), no. 1, 145–155. MR**1099788**, DOI 10.2140/pjm.1991.149.145 - J. Nikiel, H. M. Tuncali, and E. D. Tymchatyn,
*A locally connected rim-countable continuum which is the continuous image of no arc*, Topology Appl.**42**(1991), no. 1, 83–93. MR**1135783**, DOI 10.1016/0166-8641(91)90034-J
H. M. Tuncali, - H. Murat Tuncali,
*Analogues of Treybig’s product theorem*, Proc. Amer. Math. Soc.**108**(1990), no. 3, 855–858. MR**931738**, DOI 10.1090/S0002-9939-1990-0931738-9 - H. Murat Tuncali,
*Concerning continuous images of rim-metrizable continua*, Proc. Amer. Math. Soc.**113**(1991), no. 2, 461–470. MR**1069694**, DOI 10.1090/S0002-9939-1991-1069694-9 - G. T. Whyburn,
*Topological characterization of the Sierpiński curve*, Fund. Math.**45**(1958), 320–324. MR**99638**, DOI 10.4064/fm-45-1-320-324

*The geometry of laminations*(in preparation).

*Some generalizations of the Hahn-Mazurkiewicz theorem*, Ph.D. Thesis, University of Saskatchewan, Saskatoon, 1989.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 281-286 - MSC: Primary 54F15; Secondary 54B15, 54C05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260177-3
- MathSciNet review: 1260177